68 research outputs found

    Whole-Plant Water Use in Field Grown Grapevine: Seasonal and Environmental Effects on Water and Carbon Balance

    Get PDF
    Water scarcity is a main challenge in vineyards sustainability in most of the grapevine areas now and even more in near future due to climatic change perspectives. In consequence, water use efficiency (WUE) measurements are of the highest interest to improve the sustainability of this crop. The vast majority of WUE measurements relays on measurements of leaf carbon and water fluxes at leaf-level. However, less data are available at the whole-plant level, and for the moment those data are not totally coincident with conclusions reached at leaf scale. In this study, we used whole-plant chambers able to enclose an entire plant of 12 years old to measure at the same time water and carbon fluxes under realistic field grown conditions. The main objectives were to identify the technical issues interfering the whole-plant measurements and track the environmental and other abiotic factors that can affect water and carbon balance, i.e., WUE at the whole-plant scale. To achieve those objectives, we measured whole-plant water and carbon fluxes in grapevine exposed to two different water regimes at three phenological stages [pea size (July), ripening (August), and harvest (September)]. In September, measurements were repeated under high CO2 to also check its effect at the whole-plant scale. The results indicate that water and carbon fluxes are well coordinated under both water availability treatments. Under drought conditions, both fluxes were drastically reduced, but surprisingly the estimated WUE resulted not improved but decreased, contrarily to what is shown at the leaf scale. The phenology (September) also strongly decreased both water and carbon fluxes when compared to measurements in July. We hypostatized that harvest load respiration rates could have an important weight on the whole-plant net carbon exchange (NCE). Finally, high CO2 measurements, after correction for leaks, indicated an increase of whole-plant NCE as well as increased whole-plant WUE, as expected. Several technical issues were identified, like 1/instability of [CO2] during the night period that prevent robust estimation of whole-plant respiration and 2/condensation during last night and sun-rise hours which may affect the estimation of daily plant transpiration

    Mesophyll diffusion conductance to CO 2: An unappreciated central player in photosynthesis

    Get PDF
    Mesophyll diffusion conductance to CO 2 is a key photosynthetic trait that has been studied intensively in the past years. The intention of the present review is to update knowledge of g m, and highlight the important unknown and controversial aspects that require future work. The photosynthetic limitation imposed by mesophyll conductance is large, and under certain conditions can be the most significant photosynthetic limitation. New evidence shows that anatomical traits, such as cell wall thickness and chloroplast distribution are amongst the stronger determinants of mesophyll conductance, although rapid variations in response to environmental changes might be regulated by other factors such as aquaporin conductance.Gaps in knowledge that should be research priorities for the near future include: how different is mesophyll conductance among phylogenetically distant groups and how has it evolved? Can mesophyll conductance be uncoupled from regulation of the water path? What are the main drivers of mesophyll conductance? The need for mechanistic and phenomenological models of mesophyll conductance and its incorporation in process-based photosynthesis models is also highlighted.The study was financially supported by the Estonian Ministry of Science and Education (grant SF1090065s07), the Spanish Ministry of Science and Innovation through projects BFU2008-01072 (MEFORE), AGL2009-11310/AGR, BFU2011-23294 (MECOME) and CGL2009-13079-C02-01 (PALEOISOTREE), and the European Commission through European Regional Fund (the Estonian Center of Excellence in Environmental Adaptation), and the Marie Curie project MC-ERG-246725 (FP7). J.P.F. is supported by the Ramón y Cajal program (RYC-2008-02050). A.G. had a Swiss National Science Fellowship (PA00P3_126259). M.M.B. and C.R.W are supported by Future Fellowships from the Australian Research Council (FT0992063 and FT100100024). C.D. was supported by a grant from the French government and by the cooperation project Tranzfor (Transferring Research between EU and Australia–New Zealand on Forestry and Climate Change, PIRSES-GA-2008-230793) funded by the European Union

    Ahora / Ara

    Get PDF
    La cinquena edició del microrelatari per l’eradicació de la violència contra les dones de l’Institut Universitari d’Estudis Feministes i de Gènere «Purificación Escribano» de la Universitat Jaume I vol ser una declaració d’esperança. Aquest és el moment en el qual les dones (i els homes) hem de fer un pas endavant i eliminar la violència sistèmica contra les dones. Ara és el moment de denunciar el masclisme i els micromasclismes començant a construir una societat més igualitària. Cadascun dels relats del llibre és una denúncia i una declaració que ens encamina cap a un món millor

    Uptake, Loss and Control

    No full text
    Water flow in plants involves tightly controlled processes that drive water movement from the rhizosphere to the leaf–atmosphere interface. Water molecules cross plant tissues radially via the apoplast and/or via a cell-to-cell path, which involves the contribution of water channels named aquaporins, and axially via the xylem vessels. Water uptake by roots and its loss through stomata at the leaf surface are regulated by environmental parameters including soil water availability and vapor deficit pressure, which combines air relative humidity and temperature. These parameters directly affect the transpiration stream, which is the driving force for long-distance water movement in plants. In addition, signaling molecules, such as the hormone abscisic acid, regulate the water uptake or loss. The mechanisms controlling the water flow under water deficit conditions are summarized together with the experimental tools to measure water status parameters

    Desarrollo de herramientas directas e indirectas de control de plagas y enfermedades asociadas con el viñedo basadas en nematodos entomopatógenos y sus derivados

    No full text
    Resumen del trabajo presentado en el VIII Foro de Producción Animal & IV Foro de Agricultura Tropical de la Universidad Papaloapan (México), en diciembre de 2021Uno de los mayores retos a los que se enfrenta el sector vitícola en la actualidad es el control de plagas y enfermedades en un contexto cambiante debido al calentamiento global. El manejo de plagas y enfermedades tiene que ser eficiente, responsable, y de bajo impacto medioambiental. Por ello, el desarrollo de nuevas herramientas biotecnológicas de precisión que permitan reducir la aplicación de pesticidas sintéticos es clave para la sostenibilidad de este sector tan importante económica y culturalmente.Peer reviewe

    Data from: The deterrent ability of Xenorhabdus nematophila and Photorhabdus laumondii compounds as a potential novel tool for Lobesia botrana (Lepidoptera: Tortricidae) management

    No full text
    Statistical data described in the article and the solfware SPSS and the charts with Prism Graphpad 8.0 (Prism). Repetition of all the experiments (two times eachs), check of the controls, assurance of good and reproducible conditions.Experiment performed in the lab, following details described in the publication: https://doi.org/10.1016/j.jip.2023.107911; http://hdl.handle.net/10261/304637Ministry of Science and Innovation, grant PID2019-104112RB I00 (MCIN/AEI/10.13039/50110001103). The predoctoral contract FPI-UR 2021 (University of La Rioja) support IVDPeer reviewe

    The deterrent ability of Xenorhabdus nematophila and Photorhabdus laumondii compounds as a potential novel tool for Lobesia botrana (Lepidoptera: Tortricidae) management

    Get PDF
    The grapevine moth, Lobesia botrana (Lepidoptera: Tortricidae), is a critical pest for vineyards and causes significant economic losses in wine-growing areas worldwide. Identifying and developing novel semiochemical cues (e.g. volatile bacterial compounds) which modify the ovipositional and trophic behaviour of L. botrana in vineyard fields could be a novel control alternative in viticulture. Xenorhabdus spp. and Photorhabdus spp. are becoming one of the best-studied bacterial species due to their potential interest in producing toxins and deterrent factors. In this study, we investigated the effect of the deterrent compounds produced by Xenorhabdus nematophila and Photorhabdus laumondii on the ovipositional moth behaviour and the larval feeding preference of L. botrana. Along with the in-vitro bioassays performed, we screened the potential use of 3 d cell-free bacterial supernatants and 3 and 5 d unfiltered bacterial ferments. In addition, we tested two application systems: (i) contact application of the bacterial compounds and (ii) volatile bacterial compounds application. Our findings indicate that the deterrent effectiveness varied with bacterial species, the use of bacterial cell-free supernatants or unfiltered fermentation product, and the culture times. Grapes soaked in the 3 d X. nematophila and P. laumondii ferments had ∼ 55% and ∼ 95% fewer eggs laid than the control, respectively. Likewise, the volatile compounds emitted by the 5 d P. laumondii fermentations resulted in ∼ 100% avoidance of L. botrana ovipositional activity for three days. Furthermore, both bacterial fermentation products have larval feeding deterrent effects (∼65% of the larva chose the control grapes), and they significantly reduced the severity of damage caused by third instar larva in treated grapes. This study provides insightful information about a novel bacteria-based tool which can be used as an eco-friendly and economical alternative in both organic and integrated control of L. botrana in vineyard.The authors thank Elisabet Vaquero Jiménez and Miguel Puelles for their invaluable assistance in the laboratory. The predoctoral contract FPI-UR 2021 (University of La Rioja) support IVD. This study was also funded by the Ministry of Science and Innovation, grant PID2019-104112RB I00 (MCIN/AEI/10.13039/50110001103).Peer reviewe

    Forcing vine regrowth to delay ripening and its association to changes in the hormonal balance

    No full text
    The quality and typicality of wines, strongly depends on the management techniques used for grapevine cultivation. Actually, the increment in the average world temperature due to climate change induces not only bigger irrigation necessities, but also earlier grape-ripening processes, which take place in warmer days and shorter nights. Thus, with the aim of delaying grape ripeness of at least two months, a technique has been proposed based on forcing vine regrowth. This technique consists on forcing vine regrowth from the formed latent buds after cutting the green shoots between the second and the third node; lateral shoots, leaves, and primary clusters are also removed. In this study, a forcing treatment was carried out at three different phenological stages (G, I and J). Depending on the phenological stage of vines during the forcing treatment, we wanted to determine the berry ripening delay and to explore how this mechanical pruning interacts with the hormonal balance to modulate bud growth just before shoot decapitation (Control) and later, within the following 7 and 14 days after cutting the green shoots. Forcing treatments carried out at stages G, I and J succeeded to delay ripening 18, 27 and 45 days respectively, as compared to unforced plants. Vine yield was significantly reduced in all treatments as compared to control plants, resulting in a high level of acidity in berries which might be associated with the loss of flowers, a reduction in the fruit set percentage or a combination of both. Endogenous cytokinin (CK) content in control latent buds decreased during the vine vegetative cycle. Contrarily, abscisic acid (ABA) and Jasmonic acid (JA) increased, while minor changes were found in the concentration of gibberellins (GAs), salicylic acid (SA) and the ethylene precursor 1-aminocyclopropane-1-carboxilic acid (ACC). Moreover, a clear modification of the hormonal balance was found in latent buds 7 and 14 days after forcing regrowth. CK content significantly increased while ABA rapidly decreased after pruning in all treatments. Thus, vine regrowth from the formed latent buds might have been upregulated by CK and promoted by the absence of ABA.Financial support was provided by a post-doctoral grant from the University of the Balearic Islands and the Spanish Ministry of Education and a postdoctoral contract from the Spanish Ministry of Economy and Competitiveness (Juan de la Cierva program
    • …
    corecore