9 research outputs found

    Le gravimÚtre supraconducteur iOSG de l'observatoire gravimétrique de Strasbourg

    No full text
    The RĂ©sif superconducting gravimeter, hosted by the Eost in Strasbourg, provides the French contribution to the continuous measurement of temporal variations in the Earth's gravity field. These measurements allow the study of geophysical phenomena within a spectral window ranging from Earth's own modes to long-period variations such as pole motion and tides. This gravimeter belongs to the French seismological and geodetic network RĂ©sif, a national research infrastructure dedicated to the observation and understanding of the structure and dynamics of the Internal Earth. RĂ©sif is based on high-tech observation networks, composed of seismological, geodetic and gravimetric instruments deployed in a dense manner throughout France. These data make it possible to study with high spatial and temporal resolution the deformation of the ground, surface and deep structures, seismicity on a local and global scale and natural hazards, and more particularly seismic hazards, on French territory. RĂ©sif is integrated into European (EPOS - European Plate Observing System) and global systems of instruments for imaging the Earth's interior as a whole and studying many natural phenomena. This gravimeter also integrates a global network of superconducting gravimeters as part of the Global Geodynamics Project, which includes more than 30 stations operating worldwide and has been a service of the International Geodetic Association (IAG) and GGOS (Global Geodetic Observing System) since 2015 called IGETS (International Geodynamics and Earth Tides Service). The objectives pursued concern global geodynamics and fluid nucleus dynamics, solid Earth-atmosphere-ocean-hydrology interactions and the calibration of satellite data for water resources estimation.Le gravimĂštre supraconducteur de RĂ©sif, hĂ©bergĂ© par l’Eost de Strasbourg, fournit la contribution française aux mesures continues des variations temporelles du champ de pesanteur terrestre. Ces mesures permettent l’étude de phĂ©nomĂšnes gĂ©ophysiques dans une fenĂȘtre spectrale allant des modes propres de la Terre aux variations longues pĂ©riodes telles que le mouvement du pĂŽle et les marĂ©es. Ce gravimĂštre appartient au rĂ©seau sismologique et gĂ©odĂ©sique français RĂ©sif, une infrastructure de recherche nationale dĂ©diĂ©e Ă  l’observation et la comprĂ©hension de la structure et de la dynamique Terre interne. RĂ©sif se base sur des rĂ©seaux d’observation de haut niveau technologique, composĂ©s d’instruments sismologiques, gĂ©odĂ©siques et gravimĂ©triques dĂ©ployĂ©s de maniĂšre dense sur tout le territoire français. Ces donnĂ©es permettent d’étudier avec une haute rĂ©solution spatio-temporelle la dĂ©formation du sol, les structures superficielles et profondes, la sismicitĂ© Ă  l’échelle locale et globale et les alĂ©as naturels, et plus particuliĂšrement sismiques, sur le territoire français. RĂ©sif s’intĂšgre aux dispositifs europĂ©ens (EPOS - European Plate Observing System) et mondiaux d’instruments permettant d’imager l’intĂ©rieur de la Terre dans sa globalitĂ© et d’étudier de nombreux phĂ©nomĂšnes naturels. Ce gravimĂštre intĂšgre Ă©galement un rĂ©seau mondial de gravimĂštres supraconducteurs dans le cadre du Global Geodynamics Project, qui regroupe plus de 30 stations en opĂ©ration dans le monde entier et qui est, depuis 2015, un service de l’Association Internationale de GĂ©odĂ©sie (IAG) et de GGOS (Global Geodetic Observing System) intitulĂ© IGETS (International Geodynamics and Earth Tides Service). Les objectifs poursuivis concernent les questions de gĂ©odynamique globale et de dynamique du noyau fluide, les interactions Terre solide-atmosphĂšre-ocĂ©an-hydrologie et le calage des donnĂ©es satellitaires pour l’estimation des ressources en eau

    Suivi par gravimétrie hybride et magnétotellurie de réservoirs géothermiques

    No full text
    We study the contribution of the micro-gravity and magnetotellurics methods to the monitoring of the spatial and temporal evolution of the geothermal reservoirs. A differential gravity signal, consistent with the position of injection and production wells, appears on the Soultz-sous-ForĂȘts enhanced geothermal system (France) whereas no significant gravity variations are observed on the one of Rittershoffen. At the Krafla geothermal field (Iceland), a general gravity increase is observed. However, a magmatic intrusion would hide the potential effect of the geothermal production. Concerning the Theistareykir geothermal reservoir, a gravity decrease occurred in the production area in 2018 and 2019 with respect to 2017. It could be explain by a loss of mass following the beginning of the production. Between 2017 and 2018, an electrical resistivity increase is measure on the same geothermal field. This punctual change would be due to an increase of the vapour phase in an EW fault. However, this interpretation assumes that the methodology to correct the orientation of the magnetic coils and the electric dipole described in this thesis is right.L’apport des mĂ©thodes micro-gravimĂ©trique et magnĂ©totellurique au suivi de l’évolution temporelle et spatiale des rĂ©servoirs gĂ©othermiques est Ă©tudiĂ© dans cette thĂšse. Un signal gravimĂ©trique diffĂ©rentiel cohĂ©rent avec la position des puits de production et d’injection est visible sur le site gĂ©othermique stimulĂ© de Soultz-sous-ForĂȘts (France) tandis qu’aucune variation gravimĂ©trique significative n’est observĂ©e sur celui de Rittershoffen (France). Sur le site gĂ©othermique de Krafla (Islande), une augmentation gĂ©nĂ©rale de gravitĂ© est visible. Toutefois, une intrusion magmatique masquerait potentiellement l’effet gravimĂ©trique de l’exploitation gĂ©othermique. Au niveau du rĂ©servoir gĂ©othermique de Theistareykir, une diminution de gravitĂ© co-localisĂ©e avec la zone de production est observĂ©e en 2018 et 2019 par rapport Ă  2017. Elle s’explique par une perte de masse suite au dĂ©but de production. Entre 2017 et 2018, une augmentation de rĂ©sistivitĂ© Ă©lectrique apparente est aussi visible sur ce mĂȘme site. Ce changement transitoire pourrait traduire une augmentation de la phase vapeur au sein d’une faille d’orientation EO. Toutefois, elle suppose que la mĂ©thodologie de correction de l’orientation des sondes magnĂ©tiques et des dipĂŽles Ă©lectriques dĂ©veloppĂ©e dans cette thĂšse soit exacte

    Hybrid gravity and magnetotellurics monitoring of geothermal reservoirs

    No full text
    L’apport des mĂ©thodes micro-gravimĂ©trique et magnĂ©totellurique au suivi de l’évolution temporelle et spatiale des rĂ©servoirs gĂ©othermiques est Ă©tudiĂ© dans cette thĂšse. Un signal gravimĂ©trique diffĂ©rentiel cohĂ©rent avec la position des puits de production et d’injection est visible sur le site gĂ©othermique stimulĂ© de Soultz-sous-ForĂȘts (France) tandis qu’aucune variation gravimĂ©trique significative n’est observĂ©e sur celui de Rittershoffen (France). Sur le site gĂ©othermique de Krafla (Islande), une augmentation gĂ©nĂ©rale de gravitĂ© est visible. Toutefois, une intrusion magmatique masquerait potentiellement l’effet gravimĂ©trique de l’exploitation gĂ©othermique. Au niveau du rĂ©servoir gĂ©othermique de Theistareykir, une diminution de gravitĂ© co-localisĂ©e avec la zone de production est observĂ©e en 2018 et 2019 par rapport Ă  2017. Elle s’explique par une perte de masse suite au dĂ©but de production. Entre 2017 et 2018, une augmentation de rĂ©sistivitĂ© Ă©lectrique apparente est aussi visible sur ce mĂȘme site. Ce changement transitoire pourrait traduire une augmentation de la phase vapeur au sein d’une faille d’orientation EO. Toutefois, elle suppose que la mĂ©thodologie de correction de l’orientation des sondes magnĂ©tiques et des dipĂŽles Ă©lectriques dĂ©veloppĂ©e dans cette thĂšse soit exacte.We study the contribution of the micro-gravity and magnetotellurics methods to the monitoring of the spatial and temporal evolution of the geothermal reservoirs. A differential gravity signal, consistent with the position of injection and production wells, appears on the Soultz-sous-ForĂȘts enhanced geothermal system (France) whereas no significant gravity variations are observed on the one of Rittershoffen. At the Krafla geothermal field (Iceland), a general gravity increase is observed. However, a magmatic intrusion would hide the potential effect of the geothermal production. Concerning the Theistareykir geothermal reservoir, a gravity decrease occurred in the production area in 2018 and 2019 with respect to 2017. It could be explain by a loss of mass following the beginning of the production. Between 2017 and 2018, an electrical resistivity increase is measure on the same geothermal field. This punctual change would be due to an increase of the vapour phase in an EW fault. However, this interpretation assumes that the methodology to correct the orientation of the magnetic coils and the electric dipole described in this thesis is right

    Hybrid gravity and magnetotellurics monitoring of geothermal reservoirs

    No full text
    L’apport des mĂ©thodes micro-gravimĂ©trique et magnĂ©totellurique au suivi de l’évolution temporelle et spatiale des rĂ©servoirs gĂ©othermiques est Ă©tudiĂ© dans cette thĂšse. Un signal gravimĂ©trique diffĂ©rentiel cohĂ©rent avec la position des puits de production et d’injection est visible sur le site gĂ©othermique stimulĂ© de Soultz-sous-ForĂȘts (France) tandis qu’aucune variation gravimĂ©trique significative n’est observĂ©e sur celui de Rittershoffen (France). Sur le site gĂ©othermique de Krafla (Islande), une augmentation gĂ©nĂ©rale de gravitĂ© est visible. Toutefois, une intrusion magmatique masquerait potentiellement l’effet gravimĂ©trique de l’exploitation gĂ©othermique. Au niveau du rĂ©servoir gĂ©othermique de Theistareykir, une diminution de gravitĂ© co-localisĂ©e avec la zone de production est observĂ©e en 2018 et 2019 par rapport Ă  2017. Elle s’explique par une perte de masse suite au dĂ©but de production. Entre 2017 et 2018, une augmentation de rĂ©sistivitĂ© Ă©lectrique apparente est aussi visible sur ce mĂȘme site. Ce changement transitoire pourrait traduire une augmentation de la phase vapeur au sein d’une faille d’orientation EO. Toutefois, elle suppose que la mĂ©thodologie de correction de l’orientation des sondes magnĂ©tiques et des dipĂŽles Ă©lectriques dĂ©veloppĂ©e dans cette thĂšse soit exacte.We study the contribution of the micro-gravity and magnetotellurics methods to the monitoring of the spatial and temporal evolution of the geothermal reservoirs. A differential gravity signal, consistent with the position of injection and production wells, appears on the Soultz-sous-ForĂȘts enhanced geothermal system (France) whereas no significant gravity variations are observed on the one of Rittershoffen. At the Krafla geothermal field (Iceland), a general gravity increase is observed. However, a magmatic intrusion would hide the potential effect of the geothermal production. Concerning the Theistareykir geothermal reservoir, a gravity decrease occurred in the production area in 2018 and 2019 with respect to 2017. It could be explain by a loss of mass following the beginning of the production. Between 2017 and 2018, an electrical resistivity increase is measure on the same geothermal field. This punctual change would be due to an increase of the vapour phase in an EW fault. However, this interpretation assumes that the methodology to correct the orientation of the magnetic coils and the electric dipole described in this thesis is right

    New results on the gravity monitoring (2014–2017) of Soultz-sous-ForĂȘts and Rittershoffen geothermal sites (France)

    Get PDF
    Abstract This article presents the study of the mass redistribution associated with the geothermal energy exploitation of the Soultz-sous-ForĂȘts and Rittershoffen plants by microgravity monitoring in the period 2014–2017. The two plants are located in the eastern part of France in the Rhine Graben. This rift is characterized by thermal anomalies. The Soultz-sous-ForĂȘts enhanced geothermal system is a demonstration site producing 1.7 MWe thanks to three wells 5 km deep. The Rittershoffen geothermal plant is used to produce heat (24 MWth) with two wells of 2 km depth. The most recent production episodes at Soultz-sous-Forets and Rittershoffen began on 24 June 2016 and 19 May 2016, respectively. Each summer, since 2014 for the Soultz-sous-ForĂȘts network and since 2015 for the Rittershoffen network, gravity measurements have been taken with a Scintrex CG5 gravimeter in order to calculate the gravity variation compared to a reference station and a reference time. The stability of the reference station at the Soultz-sous-ForĂȘts plant was investigated by repeated absolute gravity measurements from the FG5#206. Gravity ties with the gravity observatory of Strasbourg were also performed to compensate for the absence of superconducting gravimeter at the in situ reference station. Precise leveling was undertaken simultaneously to each gravity survey showing that vertical ground displacement is lower than 1 cm; hence, this leads us to consider that the detected gravity changes are only due to Newtonian attraction. We do not detect any signal at the Rittershoffen network in the investigated period. After the beginning of production, we noticed a small differential signal at the Soultz-sous-ForĂȘts network, which is spatially associated with the injection and production wells’ positions. Furthermore, the maximum gravity value appears in the same area as the induced seismicity related to the preferential paths of the geothermal fluid. However, a simple model based on a geothermal reservoir of cylindrical shape cannot explain the observations in terms of amplitude

    Distribution et origine de la dĂ©formation actuelle dans un basin intracontinental : le Delta de l’Okavango (Botswana)

    No full text
    International audienceLe plateau sud-africain est classiquement considĂ©rĂ© un domaine intraplaque stable, le dernier Ă©vĂ©nement orogĂ©nique ayant eu lieu Ă  la fin du PalĂ©ozoĂŻque. Or il existe de nombreuses Ă©vidences d’une dĂ©formation interne dont l’origine est dĂ©battue, la propagation du rift est-africain vers le sud-ouest est l’une des hypothĂšses proposĂ©es (Pastier et al., 2018). Ces dĂ©formations diffuses ont conduit Ă  la formation du graben de l’Okavango, l’un des plus grands Ă©cosystĂšmes endorĂ©iques actuel au monde, contrĂŽlĂ© par un jeu de failles NE-SW. Afin de comprendre sa dynamique actuelle et future, nous avons estimĂ© le champ de dĂ©placement 3D du Delta de l’Okavango Ă  partir de la dĂ©formation d’un rĂ©seau gĂ©odĂ©sique relevĂ© par GPS tous les 2 ans et d’une Ă©tude structurale.La composante horizontale affiche un mouvement latĂ©ral dextre avec un taux Ă©levĂ© inattendu : de 3 Ă  50 mm/an, croissant vers le NO. Ce rĂ©sultat est compatible avec les travaux de Pastier et al. (2017) rĂ©alisĂ© Ă  partir d’un rĂ©seau rĂ©gional plus large. La composante verticale montre une subsidence de 1 Ă  28 mm/an, Ă  l’intĂ©rieur du Delta et un uplift de 1 Ă  20 mm/an Ă  l’extĂ©rieur. L’analyse du champ de dĂ©formation montre une composante rotationnelle dans le Delta avec une faible extension perpendiculaire Ă  la direction moyenne de la structure. Ce champ de dĂ©place- ment correspond Ă  un bassin en dĂ©crochement dextre, non pas Ă  un rift comme classiquement admis. Les donnĂ©es gĂ©ophysiques sont compatibles avec cette interprĂ©tation en montrant un trĂšs faible amincissement crustal.Les taux de subsidence Ă©levĂ©s sont compatibles avec le taux d’accumulation de sĂ©diments allant de 5 Ă  15 mm/an selon l’ñge proposĂ© pour les sĂ©diments plus anciens. Cependant, la diffĂ©rence d’au moins 10 mm/an reste significative. Nous proposons qu’elle soit due Ă  l’effet de charge induite par le stockage en sĂ©diments et en eau dans le Delta et les zones avoisinantes comme montrĂ© par les donnĂ©es GRACE (6,7 km3/an depuis 2002, Llovel et al., 2010) et par l’analyse hydrogĂ©ologique de Pastier (2018).L’endorĂ©isme du systĂšme et son Ă©volution rĂ©sulte du couplage de deux processus rĂ©gionaux : la gĂ©odynamique (basin dĂ©crochant dextre) et l’hydrologie (cycle annuel et stockage en profondeur). Les deux processus produisent une subsidence Ă  deux longueurs d’onde avec un signal pĂ©riodique (cycle climatique annuel) et une tendance long terme (gĂ©odynamique et stockage permanent) qui pourraient expliquer la sismicitĂ© diffuse de la rĂ©gion

    Hybrid Microgravity Monitoring of the Theistareykir Geothermal Reservoir (North Iceland)

    No full text
    International audienceThe Theistareykir geothermal field is located in North Iceland on the Mid-Atlantic ridge. A power plant produces 90 MWe using two 45 MWe turbines in operation since autumn 2017 and spring 2018, respectively. We performed hybrid microgravity measurements from 2017 to 2019 to monitor the short-term mass redistribution induced by geothermal production. Time-lapse microgravity surveys conducted each summer with a Scintrex CG5 gravimeter reveal the spatial gravity variations with respect to a reference, where the temporal gravity changes are monitored by absolute gravity measurements done with FG5#206 from Micro-g Solutions. In parallel, continuous gravity changes are recorded by a network of several GWR Instruments iGrav superconducting gravimeters and spring gravimeter, located in the injection and production areas. A height correction is applied to the gravity data using InSAR and GNSS measurements. We notice a regular residual gravity decrease in the production area versus a stable behaviour in the injection area. Time-lapse gravity measurements reveal a minimum residual decrease of − 38 ± 10 ”Gal (1 ”Gal = 10-8 m s−2) in 2019 with respect to 2017. Simplistic forward modelling of the produced geothermal fluid using a multiple Mogi sphere model can partly explain the residual gravity decrease. This suggest that a significant part of the injected geothermal fluid flows away, maybe drained by the TjarnarĂĄs fault to the South where an increase of the water table level is observed. However, further modelling work is needed to confirm this
    corecore