71 research outputs found

    A randomized study investigating the safety, tolerability, and pharmacokinetics of evinacumab, an ANGPTL3 inhibitor, in healthy Japanese and Caucasian subjects

    Get PDF
    Evinacumab, an angiopoietin-like protein 3 monoclonal antibody, reduced low-density lipoprotein cholesterol (LDL-C) significantly in a Phase 2 study of patients with homozygous familial hypercholesterolemia. In this double-blind, placebo-controlled Phase 1 study, we compared safety, tolerability, pharmacokinetics, and pharmacodynamics of evinacumab between healthy Japanese and Caucasian adults.Subjects with LDL-C ≄2.6 and4.1 mmol/L were enrolled to one of four dose cohorts: evinacumab subcutaneous (SC) 300 mg single dose, SC 300 mg once weekly for eight doses, intravenous (IV) 5 mg/kg, or IV 15 mg/kg once every 4 weeks for two doses. Each cohort comprised 24 subjects (12 Japanese; 12 Caucasian), randomized (3:1) to receive evinacumab or placebo within each ethnic group with a 24-week follow-up.The safety profile of evinacumab (IV and SC) in both ethnicities was comparable with placebo, with no serious or severe treatment-emergent adverse events. Pharmacokinetic profiles were comparable between Japanese and Caucasian subjects across IV and SC groups. Mean calculated LDL-C decreased from baseline with both IV doses, beginning on day 3 up to week 8. Triglyceride changes observed with evinacumab IV were rapid (seen by day 2) and sustained up to week 8. Evinacumab SC doses also reduced LDL-C and triglyceride levels, although lower doses induced smaller changes. Evinacumab (IV and SC) reduced other lipids, including apolipoprotein B, versus placebo.In both ethnicities, evinacumab (IV and SC) was generally well tolerated, exhibiting comparable pharmacokinetic profiles. Dose-related reductions in LDL-C and triglycerides were observed with evinacumab in both ethnic groups

    Monotherapy with the PCSK9 inhibitor alirocumab versus ezetimibe in patients with hypercholesterolemia:Results of a 24week, double-blind, randomized Phase 3 trial

    Get PDF
    Background:Efficacy and safety of alirocumab were compared with ezetimibe in hypercholesterolemic patients at moderate cardiovascular risk not receiving statins or other lipid-lowering therapy. Methods In a Phase 3, randomized, double-blind, double-dummy study (NCT01644474), patients (low-density lipoprotein cholesterol [LDL-C] 100–190 mg/dL, 10-year risk of fatal cardiovascular events = 1%–&lt;5% [systemic coronary risk estimation]) were randomized to ezetimibe 10 mg/day (n = 51) or alirocumab 75 mg subcutaneously (via 1­mL autoinjector) every 2 weeks (Q2W) (n = 52), with dose up-titrated to 150 mg Q2W (also 1 mL) at week 12 if week 8 LDL-C was = 70 mg/dL. Primary endpoint was mean LDL-C % change from baseline to 24 weeks, analyzed using all available data (intent-to-treat approach, ITT). Analyses using on-treatment LDL-C values were also conducted.Results: Mean (SD) baseline LDL-C levels were 141.1 (27.1) mg/dL (alirocumab) and138.3 (24.5) mg/dL (ezetimibe). The 24-week treatment period was completed by 85% of alirocumab and 86% of ezetimibe patients. Least squares mean (SE) LDL-C reductions were 47 (3)% with alirocumab versus 16 (3)% with ezetimibe (ITT; p &lt; 0.0001) and 54 (2)% versus 17 (2)% (on-treatment; p &lt; 0.0001).At week 12, before up-titration, alirocumab 75 mg Q2W reduced LDL-C by 53 (2)% (on-treatment). Injection site reactions were infrequent (&lt; 2% and &lt; 4% of alirocumab and ezetimibe patients, respectively). Conclusions: Alirocumab demonstrated significantly greater LDL-C lowering versus ezetimibe after 24 weeks with the lower 75 mg Q2W dose sufficient to provide = 50% LDL-C reduction in the majority of the patients. Adverse events were comparable between groups.</p

    Relationship between alirocumab, PCSK9, and LDL-C levels in four phase 3 ODYSSEY trials using 75 and 150 mg doses

    Get PDF
    BACKGROUND: Alirocumab is a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9). OBJECTIVE: Changes in PCSK9, alirocumab, and low-density lipoprotein cholesterol (LDL-C) levels were assessed after treatment with alirocumab at doses of 75 or 150 mg every 2 weeks (Q2W). METHODS: Data were analyzed from 4 phase 3 trials (MONO; COMBO II; FH I; LONG TERM); all but MONO enrolled patients on statins. Three trials evaluated alirocumab 75 mg Q2W, with possible dose increase to 150 mg Q2W at week 12 based on week 8 LDL-C; LONG TERM studied alirocumab 150 mg Q2W. RESULTS: Patients on background statin therapy had higher mean baseline free PCSK9 concentrations vs patients not on statin. After alirocumab administration, increased alirocumab concentrations were associated with dramatic reductions in circulating free PCSK9, resulting in significant LDL-C reductions and a corresponding increase in inactive PCSK9:alirocumab complex. Alirocumab dose increase was associated with a further lowering of PCSK9 and LDL-C. Patients with higher baseline LDL-C levels (>160 mg/dL) were more likely to have their dose increased. LDL-C reductions with alirocumab were consistent between patients with baseline PCSK9 levels above or below the median when the dose increase strategy was used. When started as alirocumab 150 mg Q2W, patients with PCSK9 levels above vs below the median had a greater LDL-C reduction. CONCLUSIONS: Alirocumab-induced changes in PCSK9 and LDL-C levels were consistent with the known physiologic relationship between PCSK9, LDL receptor, and LDL-C levels, as well as statin-induced increases in PCSK9 production. (C) 2019 National Lipid Association. Published by Elsevier Inc.Peer reviewe

    No effect of PCSK9 inhibitor alirocumab on the incidence of diabetes in a pooled analysis from 10 ODYSSEY Phase 3 studies

    Get PDF
    AIMS: Statins have modest adverse effects on glycaemic control. Alirocumab, a proprotein convertase subtilisin/kexin type 9 inhibitor, lowers low-density lipoprotein cholesterol. This study assessed the effects of alirocumab on new-onset diabetes and pre-diabetes incidence in individuals without diabetes at baseline. METHODS AND RESULTS: Pooled analysis of 10 ODYSSEY Phase 3 trials (n = 4974) of 24–104 weeks duration. Six trials (n = 4211) were ≄52 weeks in length. Most patients received background maximally tolerated statin. Alirocumab effect on the rate of diabetes-related treatment-emergent adverse events (TEAEs), and/or fasting plasma glucose (FPG) and glycated haemoglobin A(1C) (HbA(1C)) was measured at baseline and every 12–24 weeks. Transition to diabetes analysis combined TEAE and FPG/HbA(1C) laboratory data. At baseline, 30.7% of individuals had diabetes and were excluded from the current analysis. The remaining 3448 individuals without diabetes had pre-diabetes (39.6%) or were normoglycaemic (29.7%). The hazard ratio (HR; 95% confidence interval) for diabetes-related TEAEs in alirocumab was 0.64 (0.36–1.14) vs. placebo and 0.55 (0.22–1.41) vs. ezetimibe. The HR associated for transition from pre-diabetes to new-onset diabetes for alirocumab was 0.90 (0.63–1.29) vs. placebo and 1.10 (0.57–2.12) vs. ezetimibe. Mean change in FPG/HbA(1C) over time showed no difference between treatment groups in patients without diabetes. CONCLUSIONS: There was no evidence of an effect of alirocumab on transition to new-onset diabetes in 3448 individuals without diabetes at baseline with a follow-up period of 6–18 months, compared to either placebo or ezetimibe. Longer follow-up with larger number of individuals is needed to conclusively rule out an effect

    Effect of Alirocumab on Lipoprotein(a) and Cardiovascular Risk After Acute Coronary Syndrome

    Get PDF
    Background: Lipoprotein(a) concentration is associated with cardiovascular events. Alirocumab, a proprotein convertase subtilisin/kexin type 9 inhibitor, lowers lipoprotein(a) and low-density lipoprotein cholesterol (LDL-C). Objectives: A pre-specified analysis of the placebo-controlled ODYSSEY Outcomes trial in patients with recent acute coronary syndrome (ACS) determined whether alirocumab-induced changes in lipoprotein(a) and LDL-C independently predicted major adverse cardiovascular events (MACE). Methods: One to 12 months after ACS, 18,924 patients on high-intensity statin therapy were randomized to alirocumab or placebo and followed for 2.8 years (median). Lipoprotein(a) was measured at randomization and 4 and 12 months thereafter. The primary MACE outcome was coronary heart disease death, nonfatal myocardial infarction, ischemic stroke, or hospitalization for unstable angina. Results: Baseline lipoprotein(a) levels (median: 21.2 mg/dl; interquartile range [IQR]: 6.7 to 59.6 mg/dl) and LDL-C [corrected for cholesterol content in lipoprotein(a)] predicted MACE. Alirocumab reduced lipoprotein(a) by 5.0 mg/dl (IQR: 0 to 13.5 mg/dl), corrected LDL-C by 51.1 mg/dl (IQR: 33.7 to 67.2 mg/dl), and reduced the risk of MACE (hazard ratio [HR]: 0.85; 95% confidence interval [CI]: 0.78 to 0.93). Alirocumab-induced reductions of lipoprotein(a) and corrected LDL-C independently predicted lower risk of MACE, after adjustment for baseline concentrations of both lipoproteins and demographic and clinical characteristics. A 1-mg/dl reduction in lipoprotein(a) with alirocumab was associated with a HR of 0.994 (95% CI: 0.990 to 0.999; p = 0.0081). Conclusions: Baseline lipoprotein(a) and corrected LDL-C levels and their reductions by alirocumab predicted the risk of MACE after recent ACS. Lipoprotein(a) lowering by alirocumab is an independent contributor to MACE reduction, which suggests that lipoprotein(a) should be an independent treatment target after ACS. (ODYSSEY Outcomes: Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab; NCT01663402)

    Effect of Alirocumab on Lipoprotein(a) and Cardiovascular Risk After Acute Coronary Syndrome

    Get PDF
    Lipoprotein(a) concentration is associated with cardiovascular events. Alirocumab, a proprotein convertase subtilisin/kexin type 9 inhibitor, lowers lipoprotein(a) and low-density lipoprotein cholesterol (LDL-C). A pre-specified analysis of the placebo-controlled ODYSSEY Outcomes trial in patients with recent acute coronary syndrome (ACS) determined whether alirocumab-induced changes in lipoprotein(a) and LDL-C independently predicted major adverse cardiovascular events (MACE). One to 12 months after ACS, 18,924 patients on high-intensity statin therapy were randomized to alirocumab or placebo and followed for 2.8 years (median). Lipoprotein(a) was measured at randomization and 4 and 12 months thereafter. The primary MACE outcome was coronary heart disease death, nonfatal myocardial infarction, ischemic stroke, or hospitalization for unstable angina. Baseline lipoprotein(a) levels (median: 21.2 mg/dl; interquartile range [IQR]: 6.7 to 59.6 mg/dl) and LDL-C [corrected for cholesterol content in lipoprotein(a)] predicted MACE. Alirocumab reduced lipoprotein(a) by 5.0 mg/dl (IQR: 0 to 13.5 mg/dl), corrected LDL-C by 51.1 mg/dl (IQR: 33.7 to 67.2 mg/dl), and reduced the risk of MACE (hazard ratio [HR]: 0.85; 95% confidence interval [CI]: 0.78 to 0.93). Alirocumab-induced reductions of lipoprotein(a) and corrected LDL-C independently predicted lower risk of MACE, after adjustment for baseline concentrations of both lipoproteins and demographic and clinical characteristics. A 1-mg/dl reduction in lipoprotein(a) with alirocumab was associated with a HR of 0.994 (95% CI: 0.990 to 0.999; p = 0.0081). Baseline lipoprotein(a) and corrected LDL-C levels and their reductions by alirocumab predicted the risk of MACE after recent ACS. Lipoprotein(a) lowering by alirocumab is an independent contributor to MACE reduction, which suggests that lipoprotein(a) should be an independent treatment target after ACS. (ODYSSEY Outcomes: Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab; NCT01663402
    • 

    corecore