1,218 research outputs found
The use of data-mining for the automatic formation of tactics
This paper discusses the usse of data-mining for the automatic formation of tactics. It was presented at the Workshop on Computer-Supported Mathematical Theory Development held at IJCAR in 2004. The aim of this project is to evaluate the applicability of data-mining techniques to the automatic formation of tactics from large corpuses of proofs. We data-mine information from large proof corpuses to find commonly occurring patterns. These patterns are then evolved into tactics using genetic programming techniques
Consequences of the Pauli exclusion principle for the Bose-Einstein condensation of atoms and excitons
The bosonic atoms used in present day experiments on Bose-Einstein
condensation are made up of fermionic electrons and nucleons. In this Letter we
demonstrate how the Pauli exclusion principle for these constituents puts an
upper limit on the Bose-Einstein-condensed fraction. Detailed numerical results
are presented for hydrogen atoms in a cubic volume and for excitons in
semiconductors and semiconductor bilayer systems. The resulting condensate
depletion scales differently from what one expects for bosons with a repulsive
hard-core interaction. At high densities, Pauli exclusion results in
significantly more condensate depletion. These results also shed a new light on
the low condensed fraction in liquid helium II.Comment: 4 pages, 2 figures, revised version, now includes a direct comparison
with hard-sphere QMC results, submitted to Phys. Rev. Let
Engineering Local optimality in Quantum Monte Carlo algorithms
Quantum Monte Carlo algorithms based on a world-line representation such as
the worm algorithm and the directed loop algorithm are among the most powerful
numerical techniques for the simulation of non-frustrated spin models and of
bosonic models. Both algorithms work in the grand-canonical ensemble and have a
non-zero winding number. However, they retain a lot of intrinsic degrees of
freedom which can be used to optimize the algorithm. We let us guide by the
rigorous statements on the globally optimal form of Markov chain Monte Carlo
simulations in order to devise a locally optimal formulation of the worm
algorithm while incorporating ideas from the directed loop algorithm. We
provide numerical examples for the soft-core Bose-Hubbard model and various
spin-S models.Comment: replaced with published versio
Vacancy supersolid of hard-core bosons on the square lattice
The ground state of hard-core bosons on the square lattice with nearest and
next-nearest neighbor repulsion is studied by Quantum Monte Carlo simulations.
A supersolid phase with vacancy condensation and 'star' diagonal ordering is
found for filling less than a quarter. At fillings above one quarter, a
supersolid phase exists between the star and the stripe crystal at
half-filling. No supersolid phase occurs above quarter-filling, if the ground
state at half-filling is either a checkerboard crystal or a superfluid. No
commensurate supersolid phase is observed.Comment: Replaced with published versio
Phase diagram of Bose-Fermi mixtures in one-dimensional optical lattices
The ground state phase diagram of the one-dimensional Bose-Fermi Hubbard
model is studied in the canonical ensemble using a quantum Monte Carlo method.
We focus on the case where both species have half filling in order to maximize
the pairing correlations between the bosons and the fermions. In case of equal
hopping we distinguish between phase separation, a Luttinger liquid phase and a
phase characterized by strong singlet pairing between the species. True
long-range density waves exist with unequal hopping amplitudes.Comment: 5 pages, 5 figures, replaced with published versio
Ultracold atoms in one-dimensional optical lattices approaching the Tonks-Girardeau regime
Recent experiments on ultracold atomic alkali gases in a one-dimensional
optical lattice have demonstrated the transition from a gas of soft-core bosons
to a Tonks-Girardeau gas in the hard-core limit, where one-dimensional bosons
behave like fermions in many respects. We have studied the underlying many-body
physics through numerical simulations which accommodate both the soft-core and
hard-core limits in one single framework. We find that the Tonks-Girardeau gas
is reached only at the strongest optical lattice potentials. Results for
slightly higher densities, where the gas develops a Mott-like phase already at
weaker optical lattice potentials, show that these Mott-like short range
correlations do not enhance the convergence to the hard-core limit.Comment: 4 pages, 3 figures, replaced with published versio
Dynamical mean field solution of the Bose-Hubbard model
We present the effective action and self-consistency equations for the
bosonic dynamical mean field (B-DMFT) approximation to the bosonic Hubbard
model and show that it provides remarkably accurate phase diagrams and
correlation functions. To solve the bosonic dynamical mean field equations we
use a continuous-time Monte Carlo method for bosonic impurity models based on a
diagrammatic expansion in the hybridization and condensate coupling. This
method is readily generalized to bosonic mixtures, spinful bosons, and
Bose-Fermi mixtures.Comment: 10 pages, 3 figures. includes supplementary materia
The fate of vacancy-induced supersolidity in 4He
The supersolid state of matter, exhibiting non-dissipative flow in solids,
has been elusive for thirty five years. The recent discovery of a non-classical
moment of inertia in solid 4He by Kim and Chan provided the first experimental
evidence, although the interpretation in terms of supersolidity of the ideal
crystal phase remains subject to debate. Using quantum Monte Carlo methods we
investigate the long-standing question of vacancy-induced superflow and find
that vacancies in a 4He crystal phase separate instead of forming a supersolid.
On the other hand, non-equilibrium vacancies relaxing on defects of
poly-crystalline samples could provide an explanation for the experimental
observations.Comment: 4 pages,4 figures. Replaced with published versio
Competition between pairing and ferromagnetic instabilities in ultracold Fermi gases near Feshbach resonances
We study the quench dynamics of a two-component ultracold Fermi gas from the
weak into the strong interaction regime, where the short time dynamics are
governed by the exponential growth rate of unstable collective modes. We obtain
an effective interaction that takes into account both Pauli blocking and the
energy dependence of the scattering amplitude near a Feshbach resonance. Using
this interaction we analyze the competing instabilities towards Stoner
ferromagnetism and pairing.Comment: 4+epsilon pages, 4 figure
- …