194 research outputs found

    Definition: Optic ataxia

    Get PDF
    International audienc

    Grasping the past: delay can improve visuomotor performance

    Get PDF
    “Optic ataxia” is caused by damage to the human posterior parietal cortex (PPC). It disrupts all components of a visually guided prehension movement, not only the transport of the hand toward an object's location [1], but also the in-flight finger movements pretailored to the metric properties of the object [2, 3 and 4]. Like previous cases [4 and 5], our patient (I.G.) was quite unable to open her handgrip appropriately when directly reaching out to pick up objects of different sizes. When first tested, she failed to do this even when she had previewed the target object 5 s earlier. Yet despite this deficit in “real” grasping, we found, counterintuitively, that I.G. showed good grip scaling when “pantomiming” a grasp for an object seen earlier but no longer present. We then found that, after practice, I.G. became able to scale her handgrip when grasping a real target object that she had previewed earlier. By interposing catch trials in which a different object was covertly substituted for the original object during the delay between preview and grasp, we found that I.G. was now using memorized visual information to calibrate her real grasping movements. These results provide new evidence that “off-line” visuomotor guidance can be provided by networks independent of the PPC

    Modifying one’s hand’s trajectory when a moving target’s orientation changes

    Get PDF
    The path that the hand takes to intercept an elongated moving target depends on the target’s orientation. How quickly do people respond to changes in the moving target’s orientation? In the present study, participants were asked to intercept moving targets that sometimes abruptly changed orientation shortly after they started moving. It took the participants slightly more than 150 ms to adjust their hands’ paths to a change in target orientation. This is about 50 ms longer than it took them to respond to a 5-mm jump in the moving target’s position. It is only slightly shorter than it took them to initiate the movement. We propose that responses to changes in visually perceived orientation are not exceptionally fast, because there is no relationship between target orientation and direction of hand movement that is sufficiently general in everyday life for one to risk making an inappropriate response in order to respond faster

    Automatic correction of hand pointing in stereoscopic depth

    Get PDF
    In order to examine whether stereoscopic depth information could drive fast automatic correction of hand pointing, an experiment was designed in a 3D visual environment in which participants were asked to point to a target at different stereoscopic depths as quickly and accurately as possible within a limited time window (≤300 ms). The experiment consisted of two tasks: "depthGO" in which participants were asked to point to the new target position if the target jumped, and "depthSTOP" in which participants were instructed to abort their ongoing movements after the target jumped. The depth jump was designed to occur in 20% of the trials in both tasks. Results showed that fast automatic correction of hand movements could be driven by stereoscopic depth to occur in as early as 190 ms.This work was supported by the Grants from the National Natural Science Foundation of China (60970062 and 61173116) and the Doctoral Fund of Ministry of Education of China (20110072110014)

    Motor Learning in Children with Neurofibromatosis Type I

    Get PDF
    The aim of this study was to quantify the frequently observed problems in motor control in Neurofibromatosis type 1 (NF1) using three tasks on motor performance and motor learning. A group of 70 children with NF1 was compared to age-matched controls. As expected, NF1 children showed substantial problems in visuo-motor integration (Beery VMI). Prism-induced hand movement adaptation seemed to be mildly affected. However, no significant impairments in the accuracy of simple eye or hand movements were observed. Also, saccadic eye movement adaptation, a cerebellum dependent task, appeared normal. These results suggest that the motor problems of children with NF1 in daily life are unlikely to originate solely from impairments in motor learning. Our findings, therefore, do not support a general dysfunction of the cerebellum in children with NF1

    Visual neglect in posterior cortical atrophy

    Get PDF
    In posterior cortical atrophy (PCA), there is a progressive impairment of high-level visual functions and parietal damage, which might predict the occurrence of visual neglect. However, neglect may pass undetected if not assessed with specific tests, and might therefore be underestimated in PCA. In this prospective study, we aimed at establishing the side, the frequency and the severity of visual neglect, visual extinction, and primary visual field defects in an unselected sample of PCA patients

    Adaptation of eye and hand movements to target displacements of different size

    Get PDF
    Previous work has documented that the direction of eye and hand movements can be adaptively modified using the double-step paradigm. Here we report that both motor systems adapt not only to small direction steps (5° gaze angle) but also to large ones (28° gaze angle). However, the magnitude of adaptation did not increase with step size, and the relative magnitude of adaptation therefore decreased from 67% with small steps to 15% with large steps. This decreasing efficiency of adaptation may reflect the participation of directionally selective neural circuits in double-step adaptation

    Long Lasting Egocentric Disorientation Induced by Normal Sensori-Motor Spatial Interaction

    Get PDF
    Perception of the cardinal directions of the body, right-left, up-down, ahead-behind, which appears so absolute and fundamental to the organisation of behaviour can in fact, be modified. Perhaps unsurprisingly, it has been shown that prolonged distorted perception of the orientation of body axes can be a consequence of disordered sensori-motor signals, including long-term prismatic adaptation and lesions of the central nervous system. We report the novel and surprising finding that a long-lasting distortion of perception of personal space can also be induced by an ecological pointing task without the artifice of distorting normal sensori-motor relationships.Twelve right-handed healthy adults performed the task of pointing with their arms, without vision, to indicate their subjective 'straight ahead', a task often used to assess the Egocentric Reference. This was performed before, immediately, and one day after a second task intended to 'modulate' perception of spatial direction. The 'modulating' task lasted 5 minutes and consisted of asking participants to point with the right finger to targets that appeared only in one (right or left) half of a computer screen. Estimates of the 'straight-ahead' during pre-test were accurate (inferior to 0.3 degrees deviation). Significantly, up to one day after performing the modulating task, the subjective 'straight-ahead' was deviated (by approximately 3.2 degrees) to the same side to which subjects had pointed to targets.These results reveal that the perception of directional axes for behaviour is readily influenced by interactions with the environment that involve no artificial distortion of normal sensori-motor-spatial relationships and does not necessarily conform to the cardinal directions as defined by the anatomy of orthostatic posture. We thus suggest that perceived space is a dynamic construction directly dependent upon our past experience about the direction and/or the localisation of our sensori-motor spatial interaction with environment
    corecore