6,842 research outputs found

    Effective field theories for heavy quarkonium

    Get PDF
    We review recent theoretical developments in heavy quarkonium physics from the point of view of Effective Field Theories of QCD. We discuss Non-Relativistic QCD and concentrate on potential Non-Relativistic QCD. Our main goal will be to derive QCD Schr\"odinger-like equations that govern the heavy quarkonium physics in the weak and strong coupling regime. We also discuss a selected set of applications, which include spectroscopy, inclusive decays and electromagnetic threshold production.Comment: 162 pages, 30 figures, revised version, references added. Accepted for publication in Reviews of Modern Physic

    Renormalization group scaling in nonrelativistic QCD

    Get PDF
    We discuss the matching conditions and renormalization group evolution of non-relativistic QCD. A variant of the conventional MS-bar scheme is proposed in which a subtraction velocity nu is used rather than a subtraction scale mu. We derive a novel renormalization group equation in velocity space which can be used to sum logarithms of v in the effective theory. We apply our method to several examples. In particular we show that our formulation correctly reproduces the two-loop anomalous dimension of the heavy quark production current near threshold.Comment: (27 pages, revtex

    Mapping deuterated methanol toward L1544: I. Deuterium fraction and comparison with modeling

    Full text link
    The study of deuteration in pre-stellar cores is important to understand the physical and chemical initial conditions in the process of star formation. In particular, observations toward pre-stellar cores of methanol and deuterated methanol, solely formed on the surface of dust grains, may provide useful insights on surface processes at low temperatures. Here we analyze maps of CO, methanol, formaldehyde and their deuterated isotopologues toward a well-known pre-stellar core. This study allows us to test current gas-dust chemical models. Single-dish observations of CH3_3OH, CH2_2DOH, H2_2CO, H_2\,^{13}CO, HDCO, D2_2CO and C17^{17}O toward the prototypical pre-stellar core L1544 were performed at the IRAM 30 m telescope. We analyze their column densities, distributions, and compare these observations with gas-grain chemical models. The maximum deuterium fraction derived for methanol is [CH2_2DOH]/[CH3_3OH] \sim 0.08±\pm0.02, while the measured deuterium fractions of formaldehyde at the dust peak are [HDCO]/[H2_2CO] \sim 0.03±\pm0.02, [D2_2CO]/[H2_2CO] \sim 0.04±\pm0.03 and [D2_2CO]/[HDCO] \sim 1.2±\pm0.3. Observations differ significantly from the predictions of models, finding discrepancies between a factor of 10 and a factor of 100 in most cases. It is clear though that to efficiently produce methanol on the surface of dust grains, quantum tunneling diffusion of H atoms must be switched on. It also appears that the currently adopted reactive desorption efficiency of methanol is overestimated and/or that abstraction reactions play an important role. More laboratory work is needed to shed light on the chemistry of methanol, an important precursor of complex organic molecules in space.Comment: Accepted for publication in A&

    Order alpha^3 ln(1/alpha) Corrections to Positronium Decays

    Full text link
    The logarithmically enhanced alpha^3 ln(1/alpha) corrections to the para- and orthopositronium decay widths are calculated in the framework of dimensionally regularized nonrelativistic quantum electrodynamics.In the case of parapositronium, the correction is negative, approximately doubles the effect of the leading logarithmic alpha^3 ln^2(1/alpha) one, and is comparable to the nonlogarithmic O(alpha^2) one. As for orthopositronium, the correction is positive and almost cancels the alpha^3 ln^2(1/alpha) one. The uncertainties in the theoretical predictions for the decay widths are reduced.Comment: 10 pages (Latex); missing term added, corrected coefficient B_p used, numerical results insignificantly change

    Techniques in Analytic Lamb Shift Calculations

    Full text link
    Quantum electrodynamics has been the first theory to emerge from the ideas of regularization and renormalization, and the coupling of the fermions to the virtual excitations of the electromagnetic field. Today, bound-state quantum electrodynamics provides us with accurate theoretical predictions for the transition energies relevant to simple atomic systems, and steady theoretical progress relies on advances in calculational techniques, as well as numerical algorithms. In this brief review, we discuss one particular aspect connected with the recent progress: the evaluation of relativistic corrections to the one-loop bound-state self-energy in a hydrogenlike ion of low nuclear charge number, for excited non-S states, up to the order of alpha (Zalpha)^6 in units of the electron mass. A few details of calculations formerly reported in the literature are discussed, and results for 6F, 7F, 6G and 7G states are given.Comment: 16 pages, LaTe

    The QCD Potential at O(1/m)O(1/m)

    Get PDF
    Within an effective field theory framework, we obtain an expression for the next-to-leading term in the 1/m1/m expansion of the singlet QQˉQ{\bar Q} QCD potential in terms of Wilson loops, which holds beyond perturbation theory. The ambiguities in the definition of the QCD potential beyond leading order in 1/m1/m are discussed and a specific expression for the 1/m1/m potential is given. We explicitly evaluate this expression at one loop and compare the outcome with the existing perturbative results. On general grounds we show that for quenched QED and fully Abelian-like models this expression exactly vanishes.Comment: 19 pages, LaTeX, 1 figure. Journal version. Discussion refined, misprints corrected, few references added; results unchange

    Three-Loop Anomalous Dimension of the Heavy Quark Pair Production Current in Non-Relativistic QCD

    Full text link
    The three-loop non-mixing contributions to the anomalous dimension of the leading order quark pair production current in non-relativistic QCD are computed. It is demonstrated that the renormalization procedure can only be carried out consistently if the dynamics of both soft and the ultrasoft degrees of freedom is present for all scales below the heavy quark mass, and if the soft and ultrasoft renormalization scales are always correlated.Comment: 19 pages, revtex, 5 postscript figures include

    Running of the heavy quark production current and 1/k potential in QCD

    Get PDF
    The 1/k contribution to the heavy quark potential is first generated at one loop order in QCD. We compute the two loop anomalous dimension for this potential, and find that the renormalization group running is significant. The next-to-leading-log coefficient for the heavy quark production current near threshold is determined. The velocity renormalization group result includes the alpha_s^3 ln^2(alpha_s) ``non-renormalization group logarithms'' of Kniehl and Penin.Comment: 30 pages, journal versio

    Renormalization group analysis of the QCD quark potential to order v^2

    Get PDF
    A one-loop renormalization group analysis of the order v^2 relativistic corrections to the static QCD potential is presented. The velocity renormalization group is used to simultaneously sum ln(m/mv) and ln(m/mv^2) terms. The results are compared to previous calculations in the literature.Comment: 13 pages. important change: running of soft Lagrangian include
    corecore