32 research outputs found

    On Electron Bernstein Waves in Spherical Tori

    Get PDF

    Advanced 3-D electron kinetic calculations for the current drive problem in magnetically confined thermonuclear plasmas

    Get PDF
    12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France)Accurate and fast electron kinetic calculations is a challenging issue for realistic simulations of thermonuclear tokamak plasmas. Relativistic corrections and electron trajectory effects must be fully taken into account for high temperature burning plasmas, while codes should also consistently describe wave-particle resonant interactions in presence of locally large gradients close to internal transport barrier. In that case, neoclassical effects may come into play and self-consistent evaluation of both the radio-frequency and bootstrap currents must be performed. In addition, a complex interplay between momentum and radial electron dynamics may take place, in presence of a possible energy dependent radial transport. Besides the physics needs, there are considerable numerical issues to solve, in order to reduce computer time consumption and memory requirements at an acceptable level, so that kinetic calculations may be valuably incorporated in a chain of codes which determines plasma equilibrium and wave propagation. So far, fully implicit 3-D calculations based a finite difference scheme and a incomplete LU factorization have been found to be so most effective method to reach this goal. A review of the present status in this active field of physics is presented, with an emphasis on possible future improvement

    Suprathermal electron studies in the TCV tokamak: design of a tomographic hard-X-ray spectrometer

    Get PDF
    Electron cyclotron resonance heating (ECRH) and current drive (ECCD), disruptive events, and sawtooth activity are all known to produce suprathermal electrons in fusion devices, motivating increasingly detailed studies of the generation and dynamics of this suprathermal population. Measurements have been performed in past years in the TCV tokamak using a single pinhole hard-X-ray (HXR) camera and electron-cyclotron-emission (ECE) radiometers, leading in particular to the identification of the crucial role of spatial transport in the physics of ECCD. The observation of a poloidal asymmetry in the emitted suprathermal bremsstrahlung radiation motivates the design of a proposed new tomographic HXR spectrometer, reported in this poster. The design, which is based on a compact, modified Soller collimator concept, is being aided by simulations of tomographic reconstruction. Quantitative criteria have been developed to optimize the design for the greatly variable shapes and positions of TCV plasmas

    Lower hybrid counter-current drive experiment in JET

    Get PDF
    12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France)Lower hybrid current drive has been demonstrated to be an efficient tool to modify the current profile in order to access to high energy confinement regimes. Counter-current drive could be an alternative scenario provided the current drive efficiency is not too small when fast electrons flow in the opposite way to the DC electric field. By reversing the toroidal field (Bt=-3.1T) and the plasma current (Ip=-1.45MA), counter current drive with lower hybrid waves has been investigated for the first time in JET. The experiments were carried out at low plasma density ( =1.0 x1019m-3 , ne(0)=1.6 x 1019m-3) with 2.9MW of lower hybrid power. The CRONOS code[1], which couples the diffusion equations to a 2-D equilibrium code, has been used to estimate the RF driven current. Runs indicate that loop voltage and internal inductance are best simulated with a current drive efficiency of –1.0 x 1019 A.W-1.m-2 with a peaked central LH power deposition deduced from DELPHINE[2]. This efficiency is indeed very close to the one found for co-LHCD at similar plasma current and density. Current profile evolves from a hollow profile (with a minimum at r/a ~0) and a maximum at r/a~0.4-0.5) to a rather flat profile (up to r/a=0.3)

    Phenomenological approach of the effective viscosity of hard sphere suspensions in shearthinning media

    No full text
    International audienc

    RF current drive and plasma fluctuations

    No full text
    The role played by electron density fluctuations near the plasma edge on rf current drive in tokamaks is assessed quantitatively. For this purpose, a general framework for incorporating density fluctuations in existing modelling tools has been developed. It is valid when rf power absorption takes place far from the fluctuating region of the plasma. The ray-tracing formalism is modified in order to take into account time-dependent perturbations of the density, while the Fokker–Planck solver remains unchanged. The evolution of the electron distribution function in time and space under the competing effects of collisions and quasilinear diffusion by rf waves is determined consistently with the time scale of fluctuations described as a statistical process. Using the ray-tracing code C3PO and the 3D linearized relativistic bounce-averaged Fokker–Planck solver LUKE, the effect of electron density fluctuations on the current driven by the lower hybrid (LH) and the electron cyclotron (EC) waves is estimated quantitatively. A thin fluctuating layer characterized by electron drift wave turbulence at the plasma edge is considered. The effect of fluctuations on the LH wave propagation is equivalent to a random scattering process with a broadening of the poloidal mode spectrum proportional to the level of the perturbation. However, in the multipass regime, the LH current density profile remains sensitive to the ray chaotic behaviour, which is not averaged by fluctuations. The effect of large amplitude fluctuations on the EC driven current is found to be similar to an anomalous radial transport of the fast electrons. The resulting lower current drive efficiency and broader current profile are i
    corecore