INT 189/96 February 1996

THE TCVXTI SOFTWARE PACKAGE
IN MATLAB

M. Anton
with the contributions from

M.J. Dutch, W. Von der Linden, J.-M. Moret,
Y. Peysson & S. Sagbo

CENTRE DE RECHERCHES EN PHYSIQUE DES PLASMAS
ASSOCIATION EURATOM - CONFEDERATION SUISSE
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
21 Av. des Bains - CH-1007 Lausanne - Switzerland






The tcvxti Software Package
in MATLAB

M.Anton
with contributions from

M. J. Dutch
W. von der Linden
J. M. Moret

Y. Peysson
S. Saghbo

A kind of manual. 3rd version 6/2/1996



|...ﬂ..r.r Illl.hu..l.“.l."..l....

i
4




CONTENTS

Contents
Overview

1 The Inversion Package: tcvxti and tcvxti uifun

1.1 Some Generalities on the Architecture . . ... ... .............
1.2 Howtousetevxti . . . . . . . . i i i i i ittt et et e e e
1.3 A fairly complete list of callbacks and function calls by tevxti .. ... ..
2 Generating Simulated data using tcvxti_simulant
3 Analysis and Display using tcvxti_guck
3.1 How tcvxti_guckis built and howitworks . . . .. ... ... .......
3.2 How to spend plenty of time with tcvxti_guck looking at tomographic
INVETSIONS .« . v v v v v e e e e e e e e e e e e e e e e e e e e e
3.3 Alistofallcallbacks ... ............0. .0 euee...
4 The Function Dictionary
A Some remarks on inversion methods
A1 The tomography problem ... . . . . . ... ... ... .. ...
A2 .. andsomewaystosolveit ... ............ .. ... ...,
A.2.1 Linear Regularisation . ... ... ... ... .00 e...
A22 Maximum Entropy . . . . . . & v i i e e e e e e e e
A.2.3 Minimum Fisher Information ... ...................

B How to calculate the T-matrix

C Helpful Books and Publications

16

20
20

22
26

27

70
70
74
7
78
82

84

87



.--E.l..




Overview

A set of MATLAB functions has been written to perform the data retrieval, calibration
and the tomographic inversion of the Soft-X-ray data obtained on the TCV tokamak.
The architecture and the use of this set of functions is the subject of section 1. Some
datafiles which are needed for the calibration have to be provided by an external routine
eff calibs new which uses spectral and angular dependences of the diode output to
determine the detector efficiency wich will not be described here. Simulated data to test
the performance of the tomography algorithms are provided by another external routine,
the function tcvxti_simulant, which will briefly be described in a second section.

A second program serves to analyse and display the inversion results in a comfortable
way. The structure and the use of this routine called tcvxti_guck will be described in
section 3.

Finally, a complete alphabetic list of the functions with their MATLAB help texts is
appended as well as some theoretical details on the calculation of the so-called T-matrix
which maps the 2D (pixel-) emissivity to 1D line integrated data and on the inversion
algorithms. A list of useful literature concludes this booklet.



o -



1 THE INVERSION PACKAGE: TCVXTI AND TCVXTI_UIFUN 3

1 The Inversion Package: tcvxti and tcvxti_uifun

1.1 Some Generalities on the Architecture

A general overview of the inversion routine is given in figure 1: The main parts are the
MATLAB function tcvxti_uifun (a graphical user interface) and a set of ’external functions’,
also written in MATLAB. The working space, i.e. all variables are set up and declared as
global by the scriptfile tcvxti.

TCVXTI: Global View

scriptfile tcvxti.m

—

tunction
tcvxti uifun.m

[—] option controls @

action controls

y

shared (global) data

y

| status Hoptions “ﬂysics’ data |

external functions

datafiles (.mat)

other external functions

Figure 1: A global view of the tcvxti inversion package. Explanations see text

After the definition of the variables, tcvxti calls the graphical user interface
tcvxtiuifun for the first time, passing as an argument the string ’initialize’, which
causes the function to initialize all graphical user interfaces (pulldown-menus, pushbut-



1 THE INVERSION PACKAGE: TCVXTI AND TCVXTI_UIFUN 4

tons, popup menus, edit boxes, text and check boxes) in the first figure of the actual
MATLAB session. This figure, in the following referred to as ’control window’ is displayed in
figure 2.

Every gui-interface calls back the main function tcvxti_uifun, passing an argument
string ’action’, which determines which action is to be performed. Most of these gui-
controls modify option variables, e.g. concerning the inversion method or the display.
These are referred to as option controls in figure 1. The change of some options may
also affect the status variables. If, for example, a new shotnumber is chosen, a new setup
for the inversion has to be calculated as well, so the status variables are set back to force
the user to get a new setup. In general, the status variables determine which buttons are
enabled or disabled, which message is to be displayed in the top left corner of the control
figure (see fig.2), or simply, what can be done next and what has to be done next. The
handles of all gui—controls are stored in the UserData matrix of the control window (see
the MATLAB manual 'How to build a graphic user interface’).

Only the FILE menu and the row of pushbuttons on top of the control window (see
fig. 2) call external functions, e.g. the function get_xtomo_data to retrieve experimental
data from the MDS+ database (see [17]). The external functions generally make use of the
option variables defined before. The input arguments of the functions are options and
'physics’ data. The output of these functions only affect the 'physics’ data. The external
functions occasionally read data from .mat data files or from other ASCII data files with
the extension .res, which again may have been provided by other functions, not included
in the tcvxti package. After a successfull function call, the status is updated.

Before going into further details, the next section describes a typical session with

tcvxti.



1 THE INVERSION PACKAGE: TCVXTI AND TCVXTI_UIFUN 5

1.2 How to use tcvxti

' %xo_e!‘_i_'meht_-d"d‘#a = L calbrai=ieERl) [0 Bavesian MaxEnt||
harge# 3 : | identical spectra = | apha=10 o ]
M T realdiodes = W = cassio Maxent |

spectral distributions [ MinFisher Req |

IO Reaularisation |

| neTe=c*psica o=

o kvl a5 | _
.l Te-exponent |fixed zero border ©
peemonen L .

[0  Granez

| second order

| | max=8

m max=4 —

Figure 2: If you launch tcvxti, this is the first window which should appear. Explanations

see text

After opening a MATLAB session, you have to make sure that the paths needed are in-
cluded in your matlabpath (see below). If that’s settled, you just type tcvxti <CR> which
starts the program like described above. Three windows should now appear, one which
looks like fig.2 and two others which are labelled TCVXTI setup display and TCVXTI
results display, which will later on serve to display the setup and the results.

[anton.efficiency]
[anton.etendue]
[anton.matlab]
[anton.maxent]
[anton.public]
[anton.tcvti]
[anton.tcvxti]

[anton.tomofour]



1 THE INVERSION PACKAGE: TCVXTI AND TCVXTI_UIFUN 6

[anton.xallg]
[moret.matlabl

First, you should decide wether you whish to work with simulated or with experimental
data, which is done using the first popup menu named experimental data top left corner
of the control figure (see fig. 2). If it’s simulated data, a gui interface pops up which lets
you choose a .mat file containing (hopefully) a simulated emissivity distribution and the
line integrated data as well as the data on which TCV shot the simulation is based (for
details on such a file see section 2).

If you want to invert experimental data, you choose a shot number and a start time,
the latter in seconds, a step size (in seconds) and a number of time steps. The stop time
is then calculated and displayed automatically.

The data to be inverted are actually retrieved by pressing on the data pushbutton. This
pushbutton either calls get xtomo_data for the experimental data, or sets the variables
according to what was read from the file with the simulated data.

Now, a setup for the tomographic inversion should be chosen. There are four options

in a popup menu:

manual setup
single-t LIUQE setup
all-shot LIUQE setup

setup from MDS

The second and third item on that list make use of the inverse equilibrium reconstruction
code LIUQE [12]. For the single-t LIUQE, the last closed flux surface at the starttime
specified in the shot data (see above) serves to determine the size and position of the
pixelgrid. The pixelgrid is chosen such that the entire pixels of the first and last rows and
columns of the grid are outside the last closed flux surface (LCFS). If the all-shot LIUQE
setup is chosen, a pixelgrid is posed such that the last rows and columns of the grid are
outside of all last closed flux surfaces available for that shot. If you want to add some
inversions to ones already existing in the MDS+ results tree, it is a good idea to retrieve
the pixelgrid from there using the setup from MDS item. With the manual setup, you can
place and size the grid anywhere you like.

Via the first edit box in the setup frame, you modify the number of radial pixels. In
case of a manual setup, the center of the grid as well as the horizontal and the vertical
width can be put in using the other edit boxes. Otherwise the latter just work as displays.
On the bottom,the actual pixelsize can be found. Below that, there is a popup menu which
allows a choice between simple T-matrix and the 3D grid T-matrix. Usually, the simple
version should be sufficient, which just calculates the lenght of every line of sight in every
pixel. The more complicated version (see Appendix) may be useful once systematic errors

(detector calibration) are reduced.



1 THE INVERSION PACKAGE: TCVXTI AND TCVXTI_UIFUN 7

Pressing the setup button now causes the call of several functions: first, the grid of
quadratic pixels is set up with the help of tcvxti_setgrid. The contours of the last closed
flux surface as well as the normalized flux contours on the pixelgrid are retrieved from MDS+
using tcvxti_getlcfs and tcvxti_getpsi. After that, either the function tmat_standard
or t_omgrid are called to calculate the T-matrix. Some statistics concerning the pixelgrid
as well as the pixelgrid itself are then displayed in the setup display window. By the
way: You may select ore deselect certain cameras or even single diodes with the help of
the SELECT menu (top of the window).

With the check box on top of the middle part of the control window, you decide if you
want to calibrate the detectors or no. A clear advantage of doing a calibration is that you
get Watts per cubic meter for your emissivity instead of arbitrary units. What’s more,
sometimes the reconstruction might look a bit funny if you don’t.

The calibration is performed calculating spectrum averaged efficiencies for the assumed
spectral distribution of the plasma soft-X-ray radiation, as detailed in [2] or LRP-515.
For that purpose, you can use the data like diffusion length and dead layer thickness of
the actual detectors mounted on TCV. Or you may choose some standard parameters,
for example ’all have 200pum diffusion length and half a micron dead layer’. This choice
is implemented in the real diodes / standard diodes popup menu. The next option
concerns the spectral distribution. You may want to assume identical distributions for all
detectors, or you may want to do a simulation, taking into account that e.g. some detectors
look right through the hot core of the plasma whereas some others just see the cold border.
You choose this clicking on the identical spectra / individual spectra pushbutton.
A further detail is the way you want to model your emissivity profile. Generally, you
will assume that electron density and temperature profiles follow the normalised flux like
Teyne = const - (¢ /1agis)®, where the exponents a have to be guessed and put into the
corresponding edit boxes below. The central electron temperature can be taken from XTe
or Thomson scattering. A good choice for the profile parameters is 0 for the density, i.e.
a flat density profile, and a more ore less peaked temperature profile. Experience shows
that for a plasma without an X-point, a = 0.8 is generally a good choice whereas for
diverted plasmas or pears a = 0.5 gives reasonable results. After that, you have to press
the calibrate button. If you deselected the calibrate check box, you’re directly switched
to invert, then.

With the block of options on the right side of the control window, you choose your in-
version method as well as some options or parameters concerning the inversion. If your run
options are like they should be (or you think so, at least) you click on invert. The inver-
sion routine chosen is launched for every timeslice. The progress report(e.g. 70 percent
done) is displayed in the top left corner of the control window (see fig.2) and in the window
of your MATLAB session.

The Bayesian MaxEnt button lets you select a Bayesian Maximum Entropy algorithm
(see e.g. [4]) originally written in FORTRAN by von der Linden [24]. The option alpha refers



1 THE INVERSION PACKAGE: TCVXTI AND TCVXTI UIFUN 8

to this routine, it’s an initial value for the regularization parameter to be optimized. For
both MaxEnt methods (the second one is a ’classical’ MaxEnt by Peysson [18]) a preblur
of the T-matrix may be adequate to smooth the reconstruction a bit.

Considering the linear Regularisation [19], you have the choice between first or second
order, which comes to minimizing the gradients or the curvature of the reconstructed
emissivity profile together with the x? of the fit. If you choose fixed zero border, the
emissivity on the outermost pixels is forced to zero in the algorithm. This is reasonable if
the border of the pixelgrid is outside the last closed flux surface, which should always be
the case if you use LIUQE to get your setup.

The MinFisher Reg algorithm is somewhat more sophisticated than the regularization,
because the smoothing is weighted by the distribution itself: small signal, big smoothing
and vice versa. This was originally introduced by von der Linden [25] and Reinmuth [20]
where the Fisher Information of a probability distribution was minimised together with
the x2 for one-dimensional deconvolution. The algorithm has been implemented by Sagbo.
This method seems to provide the best compromise between calculation speed, precision
and “beauty” as detailed in the TP report by Sagbo.

The last item in that list is the Granetz method as outlined in [9]. 1.max and m.max
denote the maximum numbers of radial nodes and poloidal harmonics, respectively.

Once the inversion is done, you may choose some display options in the menu DISPLAY
on top of the control window. Click on show and you see what you got. It’s displayed in the
results window. You may have to click show several times, if there are many timeslices.

If you like your results, you may feel the desire to do two things: Have a printout,
which is possible with the PRINT menu. Or you even want to keep your results, which
is possible in two different ways: Either you put them in a .mat file or you put them
in the MDS+ results tree. Both can be done using the items in the FILE menu. Just a
few remarks on FILE: if you select save results as .mat file, the result should be
clear. You are asked for a filename, it’s saved and that’s it. If you select overwrite/write
new MDS trace, you have to type yes in your matlab session to convince the program to
actually do so. If your not too sure about this point, you rather select add inversion to
existing results. This operation may not be successfull if there are already data and
the inversion method or the pixelgrid are not compatible. Should this be the case, you
either repeat your inversion with the parameters you find in the MDS tree, ore you save
your results to a .mat file. Tricky detail: before saving, all length units are converted to m
instead of cm as before.

Below, you see a list of all traces used to store the results in the MDS+ results tree

\RESULTS: : XTOMO : CALIBR_PARMS
\RESULTS: : XTOMO : CALIBR_TEXT
\RESULTS: : XTOMO : CALIBR_TIMES
\RESULTS: : XTOMO: CHI_SQUARED
\RESULTS: : XTOMO : COMMENT



1 THE INVERSION PACKAGE: TCVXTI AND TCVXTI_UIFUN 9

\RESULTS: : XTOMO : EMISSIVITY
\RESULTS: : XTOMO : METHOD
\RESULTS: : XTOMO : RMESH
\RESULTS: : XTOMO : SCALE_FACTOR
\RESULTS: : XTOMO : TIME
\RESULTS: : XTOMO : ZMESH

There are traces for the pixelgrid, the times where a reconstruction has been done,
the times where different calibrations were necessary, the corresponding calibration pa-
rameters used, a string giving details on the calibration, a general comment, a string on
the method employed, the x? of the result and finally the emissivity itself. Attention: It’s
stored normalised (max=1), you recover the physical units and the real ’size’ by a multi-
plication by the SCALE FACTOR. For uncalibrated data this scale factor is set to negative
unity. Should you want to stop, you also find the quit button in the FILE menu.

Once you have a lot of results, you preferentially should use the program tcvxti_guck
to display and analyse them. How this works will be described later on.



1 THE INVERSION PACKAGE: TCVXTI AND TCVXTI_UIFUN 10

1.3 A fairly complete list of callbacks and function calls by tcvxti

The following tables give a complete list of all the callbacks of tcvxti unifun and all
other functions which tcvxti_uifun calls. The tables are grouped according to the main
groups of gui controls described above. For almost every group of controls, there are two
tables. The first shows the labels of the uicontrols together with the callback string they
pass when calling tcvxti uifun. The small diagram at their side indicates where you find
these buttons on figure 2. The second table of every group lists all the subsequent calls
of other MATLAB functions which are launched by pressing the button with the number
given in the first column of all tables. For the initialization, the function call(s) are listed

in table 1

tevxti_uifun.m: init function calls
# | callback i calls/reads | calls /reads

’initialize’ | xtomo_geometry.m | etendue n2.m

angular fact_l.mat

Table 1: Function calls during initialization. The scriptfile tcvxti calls tcvxti_nuifun
and passes the callback string ’initialize’. During this procedure, a function gets the
geometry of the lines of sight and the corresponding values for the étendue géometrique.



1 THE INVERSION PACKAGE: TCVXTI AND TCVXTI_UIFUN

tcvxti_uifun: data callbacks

# | guicontrol | label | callback string
1 | popup menu | experimental data | ’data’

2 | editable field | discharge # ’shot’

3 | editable field | start time [s] ’starttime’

4 | editable field | step size [s] ’shotpara2’

5 | editable field | time steps ’shotpara2’

6 | pushbutton | data ‘getdata’

tevxti_uifun: data function calls

# | callback | calls /reads | calls /reads | calls /reads

6 | ’getdata’ | get xtomo_data.m | get_xtomo. gains.m | MDS+
MDS+

6 | 'getdata’ | sim ****_* mat

Table 2: Callbacks and function calls of tcvxti uifun during data selection and retrieval.




1 THE INVERSION PACKAGE: TCVXTI AND TCVXTI_UIFUN

tevxti_uifun: SELECT menu and setup callbacks

# | guicontrol label callback string
15 | pulldown menu item | array # ** ’selectcam’
submenu (15) item | channel # ** ‘selectch’
submenu (15) item | all channels on ‘selectch’
submenu (15) item | all channels off ’selectch’
16 | popup menu all-shot LIUQE setup | ’whatsetup’
’setgrid’
17 | editable field nr ’pixelnum’
18 | editable fields r0,z0,wr,wz ’pixelpos’
18a | popup menu simple T-matrix 'what_tmatrix’
’tmatrix’
19 | pushbutton setup ’setgrid’
’tmatrix’

I tevxti_uifun: setup function calls I

| # | callback | calls/reads ’ calls/reads |
16 | 'whatsetup’ | tcvxti_chk mds.m
19 | ’setgrid’ tcvxtisetgrid.m | MDS+
tcvxti_getlefs.m MDS+
tcvxti_getpsi.m MDS+
19 | ’tmatrix’ tmat _standard.m

raumwinkel *** mat

19 | ’tmatrix’ t_omgrid.m

tcvtitestphip.m

plot_vessel

Table 3: Callbacks and function calls of tcvxti uifun to determine the setup, i.e. lines
of sight and pixelgrid. The SELECT menu lets you switch cameras or single diodes on and
off. Setup otions can be chosen using the bottom left area of the control window. The

pushbutton ’setup’ and the two two popup menus may cause two callbacks.



1 THE INVERSION PACKAGE: TCVXTI AND TCVXTI_UIFUN 13
tcvxti_uifun: simulation and calibration callbacks
# I guicontrol | label l callback string
7 | popup menu | ne,Te = c*psi ° a | ’simopt’
8 | editable field | kT(0) [keV] ’simopt’ T
9 | editable field | Te-exponent ’simopt’ 127 14
10 | editable field | ne-exponent ’simopt’ 137 7
11 | check box calibrate ’ifcalib’ g
12 | popup menu | identical spectra ’calspec’ 10
13 | popup menu | real diodes ’caldet’
14 | pushbutton | calibrate ’calibrate’
| tevxti_uifun: simulation and calibration function calls
# | callback | calls/reads calls /reads calls /reads calls /reads
14 | ’calibrate’ | xtomo_calibrate.m | xtomo._geometry.m | etendue.n2.m
angular fact_l.mat
get_detector.m
get filters.m
get_spectrum.m Xrs_spectrum.m
eta._spec_av.m linabs.m cros2.m
dxml.m
linabs.m cros2.m
eff_calibs_10kV.res
eff_calibs_30kV.res
14 | ’calibrate’ | xtomo_simcal.m xtomo._geometry.m | etendue n2.m
angular fact_1.mat
get_detector.m
get filters.m
eta_theta kev.m linabs.m cros2.m
dxml.m
linabs.m cros2.m
eff_calibs_10kV.res
eff_calibs_30kV.res
cut lines.m

Table 4: Callbacks and function calls
’calibrate’ pushbutton calls functions
photodiodes for the spectral distribution(s) chosen.

concerning calibration or simulation options. The

which calculate spectrum averaged efficiencies of




1 THE INVERSION PACKAGE: TCVXTI AND TCVXTI_UIFUN

tevxti_uifun: inversion callbacks

|

# | guicontrol label callback string
20 | check box New MaxEnt ’runopt’
21 | check box Classic MaxEnt | ’runopt’
22 | popup menu | alpha = 10 ‘runopt’
23 | popup menu | no preblur ’runopt’
24 | check box Regularisation ‘runopt’ =
25 | popup menu | second order runopt’ 2:;2_
26 | popup menu | fixed zero border | ’runopt’ , 42275:
27 | check box MinFisher Reg ’runopt’ 23.26 —
28 | check box Granetz ‘runopt’ 28-30 —
29 | popup menu | 1 max=8 ‘runopt’
30 | popup menu | m max=2 ’runopt’
31 | pushbutton | invert run’
| tecvxti_uifun: ’invert’ function calls I
I # [ callback | calls /reads I calls/reads | calls/reads | calls/reads I
31 | ’run’ preblur.m
makem *.m
maxenttcv.m
31 | ’run’ preblur.m
makem *.m
mem_wvl.m pfixedalpha.m | dxml.m
pgoldsec pfixedalpha.m | dxml.m
31 | ’run’ makem *.m
regulo2d tcvtim | dxml.m
31 | ’run’ makem *.m
minfisher reg.m | dxml.m
31 | 'run’ granfun rect_cont.m
phip.m
rml
wml

14

Table 5: The right part of the control window (see fig.2) serves to switch between different

inversion methods and to tune some parameters of the different methods. The ’invert’

pushbutton finally launches the inversion.



1 THE INVERSION PACKAGE: TCVXTI AND TCVXTI_UIFUN 15

| tevxti_uifun: DISPLAY and ’show’ callbacks I

# | guicontrol label callback string

32 | pulldown menu item | — > display inversion results ’dispwhat’

33 | pulldown menu item | — > show some more, if possible | ’disphow’

34 | pulldown menu item | contour ’dispmodel’ S
35 | pulldown menu item | pseudocolor ’dispmode2’

36 | pulldown menu item | mesh ’dispmode3’

37 | pulldown menu item | surface ’dispmode4’

38 | pushbutton show "display’

Table 6: Display options are modified with the help of the DISPLAY menu.

| tevxti_uifun: PRINT menu callbacks

# | guicontrol label callback string
39 | pulldown menu item | results display | ’printres’

40 | pulldown menu item | setup display | ’printset’
41 | pulldown menu item | PS_.TCV_A ’selecprtl’
42 | pulldown menu item | PS_ PPH277 ’selecprt2’

Table 7: Hardcopies of the setup and of the inversion results can be otained on two different

printers using the PRINT menu.

| tevxti_uifun: FILE menu callbacks

# | guicontrol label callback string
43 | pulldown menu item | save results as .mat-file ’save’
44 | pulldown menu item | overwrite/write new MDS trace | ’store.mds’
45 | pulldown menu item | add inversions to existing... ‘merge._mds’
46 | pulldown menu item | quit ’quit’

tevxti_uifun: FILE menu function calls S —
# | callback calls /reads I calls /reads | calls /reads Em
43 | ’save’ _“'\‘L\

43-46

44 | 'store_mds’ | tcvtistoremds | MDS+
45 | 'merge mds’ | tcvti_merge.mds | tcvti_get_mds MDS+
tevti_store.mds | MDS+

Table 8: Results can be stored as .mat using the ’save as mat-file’ item in the FILE menu.

They may as well be stored in the MDS+ tree.



2 GENERATING SIMULATED DATA USING TCVXTI_SIMULANT 16

2 Generating Simulated data using tcvxti_simulant

Simulated data sets are quite useful in testing the performance of a certain setup for
the inversion, i.e. the combination of pixelgrid, lines of sight and the particular method
chosen. They can be generated with the help of the simple function tcvxti_simulant.
The function has to be called passing a string which contains a filename, like for example
tcvxtisimulant(’sim 8100.1’), where a matlab script file sim_8100_1.m has to exist
somewhere containing the parameters of the simulation to be performed. A template for

such a file can be found in
[anton.tcvxti.simulations]sim_template.m

The function tcvxti_simulant then calls several of the functions mentioned in the pre-
ceding sections, as the most important one notably xtomo_simcal .m, passing as arguments
the parameters specified in the .m-file. After about 20 seconds a file sim_8100_1.mat is
then written to the directory [anton.tcvxti.simulations] which should also contain
the corresponding .m-file. The parameters of the simulations stored can thus easily be
checked or printed out.

In addition to the parameters which are used for the calibration procedure (see above),
the funtype=3-option allows to simulate mode structures. On top of a simulation using
the equilibrium reconstruction at the starttime specified, a mode-like perturbation of the
emissivity can be added. The mode number, the normalised flux coordinate, a relative
amplitude (with respect to the unperturbed emissivity), a width (in terms of the flux,
assuming a Lorentzian shape in 1-direction) and a vector of phase angles have to be
specified. If the increment of the phase angle is chosen not constant with time, a mode
rotating with changing frequency or even a blocking mode can be simulated.

Below, a specimen parameter scriptfile for tcvxti_simulant is listed, namely
5im_9243_2.m.

% [anton.tcvxti.simulations]sim_9243_2.m
%
%

%, ========== a parameter file for tcvxti_simulant =s=======s=====ss========

'/. ____________________________________

% ---- discharge number

[/

shot=9243;



2 GENERATING SIMULATED DATA USING TCVXTI_SIMULANT

% ---- start time [s]

)

tstart=0.746;

% ---- step size [s]

%

dt=0.0001;

% -=--- time steps

[/

schritte=41;

% ---- setup type for meshgrid

[/

% 1i_setup=2: single t LIUQE setup @start time
% i_setup=3: all-shot LIUQE setup

/

i_setup=2;

% ---- number of radial pixels (suggested: 15)

%

nx=15;

% ---- type of diodes to be simulated

%

% i_dioda=1: real detectors (LD20-5T installed omn TCV)
% i_dioda=2: standard detectors (L=200mu, dp=0.5mu)



2 GENERATING SIMULATED DATA USING TCVXTI_SIMULANT 18

[

i_dioda=1;

Y m e e
% --- function type

% funtype = 1 single step, no modes

% funtype = 3 several steps possible, modes
%

funtype=3;
U
% --- spectral distribution described by

%

% kTeO central electron temper. in [keV]

%“ Te = constl * psi“a_te temparature profile

“ ne = const2 * psi“a_ne density profile

% with psi being the normalised flux

kTe0=0.6;
a_te=0.8;

a_ne=0;

if funtype == 3

h --- mode structures can be added: it is assumed that the emissivity X(psi)
% changes following

% delta_X = X0*(1/(1+(psi-psi_mode)~2/HWHM"2)~2*cos(m_mode*theta + phi)
h

b o

% --- poloidal mode number m

h

m_mode=2;



2 GENERATING SIMULATED DATA USING TCVXTI_SIMULANT 19

h --- relative amplitude of the mode r0 so that X0 = r0 * X(psi)
A

amp_mode=0.1;
% --- psi - coordinate of the mode
[/

psi_mode=0.85;

% --- HWHM of the mode, assuming a Lorentzian shape with respect to psi

)

HWHM_psi_mode=0.15;

% --- phase angles of the mode
[/

phii=0;

phi2=6%pi;

% phi=linspace(phil,phi2,schritte)
dphi=(phi2-phil)*(1-linspace(1,0,schritte))."2;
dphi=dphi(length(dphi):-1:1);
phi=phi2-dphi;

% other variations of phi with time are possible!

end J end if funtype

h end of the parametfile



3 ANALYSIS AND DISPLAY USING TCVXTI_GUCK 20

3 Analysis and Display using tcvxti_guck

3.1 How tcvxti_guck is built and how it works

With tcvxti_guck you can look at the results of your previously finished tomographic
inversion and analyse the features of the inversion with the help of the Singular Value
Decomposition, further referred to as SVD (see e.g. [19, 8]).

TCVXTI_GUCK: Global View

scriptfile
tevxti_guck

initializes

@ ( declares gl{)bals )

function
tevxti_guckma.m calculates / shows
modifies/uses

—1 option controls

action controls |}

variables
'physics"
call status || options [ 'virgin' || display |
external functions -
set up

read

datafiles (.mat)
MDS+ traces

tcvxti inversion routines

Figure 3: A global view of the display and analyses routine tcvxti_guck. Explanations

see text.

Like above, a coarse overview is at hand. Launching the MATLAB script file tcvxti_guck
initializes the graphic interface by a call to tcvxti_guckma, passing the argument string
’initialize’. This causes a set of gui interfaces to pop up in the first window of the
MATLAB session. As for tcvxti_uifun, the handles of all controls are stored and retrieved



3 ANALYSIS AND DISPLAY USING TCVXTI_GUCK 21

from the UserData matrix of the control window.

At the same time, the shared data are declared as global. As above, there are sta-
tus variables, options and ’physics’ data. Here, only three external functions are needed,
namely tcvxti_get.mds, tcvxti_getlcfs and tcvxti_getpsi to retrieve the inversion
results as well as the last closed flux surface and the normalized flux contours from the
MDS+ results tree. The data retrieved from the tree remain untouched in memory, which
is indicated in fig. 3 as ’virgin’. All manipulations which can be performed with the
different gui buttons, e.g. an SVD filtering of the result, generate a treated subset of the
original data for display purposes. This set of data is referred to as display in figure
3. Once the data are there, tcvxti_guckma keeps calling itself, passing different string

arguments which determine the actions to be performed next.



3 ANALYSIS AND DISPLAY USING TCVXTI_GUCK 22

3.2 How to spend plenty of time with tcvxti_guck looking at tomo-
graphic inversions

Things tend to repeat themselves. In that sense I shall now describe how a typical session
with tcvxti_guck takes place.
After you launched your MATLAB session, you have to make sure all the paths are there.

This time it’s just two, namely

[anton.tcvtil

[anton.tcvxti]

Now you start the program by typing tcvxti guck, which initializes the gui-
interfaces by calling tcvxti_guckma(’initialize’). (This is analogous to tcvxti /
tcvxti_nifun.) Two figures should pop up. The first is the control window and is labelled
TCVXTI_GUCKMA.O. You see a hardcopy of this window in figure 4. The second simply serves
as the display.

On the left bottom of the control window, you see an edit box with the label shot #.
That’s where you can type in the number of the TCV discharge you want to analyse
(you’re not surprised, I guess...). If you then go to the File menu top left, you have three

options:

load results from .mat file
load results from MDS
quit

Since you’ve just started, the third point on the list is probably not what you want. If you
select the first point, the shot number you typed in is worthless because then a menu pops
up where you can choose any .mat file with your results. If you select the second point
on the above list, the MDS+ results tree is opened for the shotnumber you chose and all
reconstructions which can be found there are transferred to your MATLAB working space.
The minimum and maximum of the time with available reconstructions are displayed right
next to the labels tmin and tmax (see figure 4). At the same time, data from the equilibrium
reconstruction, which you may want to compare to the XTOMO results, are fetched from
MDS+ as well.

Now, you should remark that two graphs have appeared in the control window showing
the maximum of the emissivity versus time for the reconstructions you loaded. At the
beginning, both graphs should look the same. But you can change that by typing different
times in the edit boxes which are labelled tstart and tstop. With the help of these
guicontrols you choose the subset of the reconstructions you’re specially interested in. In
your controlwindow you should see then that the selected part of the reconstruction is
displayed in the right figure and is highlighted (or rather ’dark’lighted in fig. 4) in the left

part, where you still see all reconstruction timeslices available in memory.



3 ANALYSIS AND DISPLAY USING TCVXTI_GUCK 23

Before you actually can see the results, I have to draw your attention to the two
pushbuttons on the bottom right of the control window, the ones which are labelled APPLY
and SHOW, respectively. You have to click on APPLY to encourage the program to do a lot
of things for you:

o take the selected subset of the reconstructions
o do an SVD of the matrix which contains the corresponding reconstructions
o calculate one horizontal cut through the emissivity distribution and

o calculate two vertical cuts through the emissivity, one where on the average the
position of the maximum emissivity can be found (like in the horizontal case) and
one along the path where the YAG Laser of the Thomson scattering diagnostic
usually fires through the vessel.

e enable the SHOW button

Depending on the number of reconstructions involved, this may take some time.

What SHOW does, should be evident, somehow. The SHOW button, together with the
APPLY button, the File and the Print menus constitute the whole set of ’action’ controls
(compare figure 3). All the rest is just options,a part of which has already been discussed.
We'll get the rest in what follows now.

With the sliders row, column and speed you influence the number of rows and columns
you want your display window to have. This enables you to see several reconstructions at
once. If you set nonzero speed, you automatically reset the number of rows and columns
both to 1, in which case the reconstructions are automatically displayed one after another!.
Vice versa the speed is reset to zero if you choose to see more than one reconstruction at
once.

To understand the SVD stuff and what the SVD menu as well as the topos/chronos
item in the Display menu means, I suggest you first have a look at a paper by Dudok de
Wit et al. [8]. Other helpful informations may be found in the MATLAB reference manual
or in [19]. Here, I can just give a very brief overview:

The variable X, a matrix, contains the reconstructed emissivity for all pixels and all
analysed timeslices. Every column of X represents a different timeslice, every row corre-
sponds to a certain pixel. If you do an SVD in matlab, which reads

[u,s,v]l=svd(X);
you can recover X from the three matrices u,s, v like this:

X=u*sg*v’;

!The MATLAB movie command has not been used because there’s a certain tendency to crash. Maybe

there are reasons to that.



3 ANALYSIS AND DISPLAY USING TCVXTI_GUCK 24

The columns of u are a kind of spatial ’eigenmodes’ (topos), which are linked to their
temporal ’eigenmodes’ (chronos), the columns of v via the corresponding ’singular value’
in the diagonal matrix s. This means, there are always pairs of spatial and temporal
vectors which represent a certain ’feature’ of the spatial and temporal evolution of the
emissivity in the time interval under consideration. The elements of the 'diagonal’ matrix
s are sorted in descending order, so that the first pair of topos/chronos will contain the
most important information on the reconstruction. You can look at just this if you do not
recover the whole matrix X like above, but if you leave all higher components aside, e.g.

like this:
Ximportant=u(:,1)*s(1,1)*v(:,1)’;

This represents a kind of filtering. On the other hand, you may want to see just the
changes, not the gross features. This can be done in the following way:

Xchanges=u(:,2:20)#%s(2:20,2:20)*v(:,2:20)’;

You can display the topos/chronos pairs by choosing the corresponding item in the Display
menu and then clicking on SHOW. The filtering or suppressing of gross features is done using
the items of the SVD menu. You should by now have an idea what this means. Just try
it. It won’t hurt neither you nor the computer. Just keep in mind that you have to click
APPLY after you selected or deselected something in the SVD menu.

All the rest in the Display should be evident. Find out by trying. The last three items
on the list let you add the vessel, the last closed flux surface or the flux contours.

The Print menu finally just brings up Jean Marc Morets printmenu in your display
figure. Just in case you want a hardcopy. If you've had enough, there’s always the quit

item in the File menu.



25

3 ANALYSIS AND DISPLAY USING TCVXTI_GUCK

L:- il __‘:-;’. .._' O Tri ¢ (e
-

S50010 -
( J

i
= 17

Figure 5: The Display menu. Discover the wonderful world of tomographic reconstructions

.... the names are hopefully self-explanatory.

Figure 6: The SVD menu. You can select or deselect certain pairs of spatial and temporal
‘eigenmodes’ of the reconstruction. But please look at them first, using the topos/chronos

item in the Display menu. See above.



3 ANALYSIS AND DISPLAY USING TCVXTI_GUCK

3.3 A list of all callbacks

26

In the following table, a list of all callbacks and calls to other MATLAB functions is given.
Since tcvxti_guck is not that complex, we just have this one.

tcvxti_guckma callbacks
# I guicontrol l label callback string | functions called

1 | editable field shot # ’shotnumber’

2 | pd menu item | load res from .mat | ’load_mat’

3 | pd menu item | load res from MDS | ’load_mds’ tcvti_get_mds
tevxti_getlefs
tevxtigetlpsi

4 | editable field tstart ’timewin’

5 | editable field tstop ’timewin’

6 | slider * row rows’

7 | slider * column ‘cols’

8 | slider speed ’dispspeed’

9 | pushbutton APPLY ’apply’

10 | pushbutton SHOW ’guckma’

11 | pulldown menu | SVD ’svdselect’

12 | pulldown menu | Display ’dispopt’

13 | pulldown menu | Print printmenu

Table 9: Callback strings and external function calls by

tcvxti_guckma

numbers of gui controls of



4 THE FUNCTION DICTIONARY 27

4 The Function Dictionary

The following pages contain the help texts of all matlab functions used in the tcvxti
environment in alphabetical order. In some cases, the program listings will have to be
consulted as well as some of the publications cited throughout the text of this document
to get a full understanding of what is going on. I hope the list will be helpful in spite of
many imperfections.

The program eff_calibs new.m with the help of which the files eff_calibs_*.res

containing the diode parameters were generated, has not been included.



4 THE FUNCTION DICTIONARY 28

cut_lines

----- [anton.xallg]

function
[xchord,ychord,relevant]=cut_lines(xchord,ychord,xmin,xmax,ymin, ymax) ;
"xchord,ychord" matrices are ’squeezed’ into the box specified by
"xmin,xmax,ymin,ymax". Chords which DO cross this rectangle are
sorted out, their numbers are specified in ’relevant’ and returned.

i.e. the size of the output "xchord,ychord" matrices may be smaller

than the corresponding inputs.

see XTOMO_GEOMETRY for the definition of xchord,ychord

-------- MA 1995



4 THE FUNCTION DICTIONARY 29

cros2

--~-[anton.efficiency]
function [RHO,NER,E1,E2,A1,A2,A3,A4)=cros2(filter)

CROS.DAT, 23/6/1993
routine to provide cross-section data originally
stored in Fortran database file CROS.DAT

M. J. Dutch Feb 1992

SYNTAX: function [RHO,NER,E1,E2,A1,A2,A3,A4]=cros2(filter)

INPUT:
FILTER = string containing name of filter material
e.g. 'BE’ , AL’ , ’FE’ etc 0 ’, ’N?’
OUTPUTS:
RHO
NER
E1,E2 = limits of energy range (keV)
A1,A2,A3,A4 = coeffs of polynomial fit
to logl0(XS) vs logl0(E)

density in g/cm”3

number of energy ranges



4 THE FUNCTION DICTIONARY 30
DXML
e

DXML Dec-eXtended-Math-Library interface
DXML(’*’ ,A,B[,opa,opb,a,b,C]) a*opa(d)*opb(B)+b*C

DXML(’\’,A,B[,op,nbloc]) op(4)\B

DXML(’chol’,A[,B]) A\B or inv(A), A being sym pos def
DXML(’gsep’,A,B) eig(4,B) A,B being sym

DXML(’exp’,A) exp(4)

op = ’N’ormal ’T’ranspose



4 THE FUNCTION DICTIONARY 31

eta_spec_av

------ [anton.efficiency]
function etabar=eta_spec_av(ABS,D,dd,w,L,FILTER,fd,ff,theta,KEV,EDIST,model)
is a subroutine used by eff_calib.m

output: a table length(L) x length(theta) of spectrum averaged efficiencies

inputs: ABS -the absorber Material , e.g. ’SI’

D -thickness of the absorber

dd ~dead layer thickness in microms

W -width of depletion zone in microns

L -a col. vector of diffusion lengths in microns

FILTER -a col. vector of filter materials, eg.
[’SI’;°N *;°0 ’]

fd -a col vector of filter thickness in microns

f£ -a col vector of flags: ff=1: no change of filter
thickness with theta, f£f=0: fd->fd/cos(theta)

theta -a row vector of angles theta in radians

KEV -a row vector of photon energies in keV

EDIST -normalized spectral distribution, sum(EDIST)=1

model ~a number to specify the model used (1,2,3):

1: width w neglected, D very large (Kingston)
2: w,D and L taken into account (own mod. of Kingston’s formula)

3: only w and L (formula from Sze, Physics of Semiconductur Devices)



4 THE FUNCTION DICTIONARY 32

eta_theta kev

------ [anton.efficiency]

function eta=eta_theta_kev(ABS,D,dd,w,L,FILTER,fd,ff,theta,KEV,model)

output: a table length(theta) x length(KEV) of efficiencies

inputs: ABS -the absorber Material , e.g. ’SI’
D -thickness of the absorber
dd -dead layer thickness in microns
W -width of depletion zone in microns
L -a col. vector of diffusion lengths in microns

FILTER -a col. vector of filter materials, eg.
["SI’;’N :;:0 :]

fd -a col vector of filter thickness in microns

ff -a col vector of flags: ff=1: no change of filter
thickness with theta, ff=0: f£d->fd/cos(theta)

theta -a row vector of angles theta in radianms

KEV -a row vector of photon energies in keV

model ~-a number to specify the model used (1,2,3):

1: width w neglected, D very large (Kingston)
2: w,D and L taken into account (own mod. of Kingston’s formula)

3: only v and L (formula from Sze, Physics of Semiconductur Devices)



4 THE FUNCTION DICTIONARY 33

etendue_n2

——————— [ANTON.ETENDUE]

function

AOMEGA=etendue_n2(bix,bly,biz,b2x,b2y,b2z,201,202,X0,cw);

calculates ’etendue geometrique’ A*OMEGA for two rectangular apertures
! ALL LENGTHS IN MM !

input: bix bly blz : width, height and thickness of ap. 1

b2x b2y b2z : ap. 2

201 : distance detector - ap.1

z02 : distance detector - ap.2

X0 : shift centers of detector arr. - apil

cw : det # clockwise if cw==

output: AOMEGA : etendue A x OMEGA in mm"~2 x steradians (20x1)



4 THE FUNCTION DICTIONARY 34

get_detector

[anton.efficiency]-------~====--

function [ABS,D,w,dd,dp,infostr]=get_detector(whatdiode,dp)

input:whatdiode 1:LD20-5T (Centronic)
2:0SD-50-4X (Centronic)
3:AXUV100 (IRD)
dp pt+ layer thickness, if not specified

the program asks for input

output:ABS absorber Material, e.g. ’SI’
D absorber thickness in microns
W width of depletion zomne
dd Si3N4 thickness
dp see above
infostr string with the name of the diode

—=-= MA 3/1/95 —=====m=mmmmmmmeen



4 THE FUNCTION DICTIONARY 35

get_filters

[anton.efficiency] ----------

function [FILTER,fd,ff,filt,infostr]=get_filters(dd,dp,spec,filt)

input: spec -optional, only important if used for visible light
dd -~thickness of Si3N4 dead layer
dp -thickness of p+ dead layer
filt -integer,if already decided which one to use
1 47u Be, Si3N4
2 125u Be,air,Si3N4
3 Be, B, Si3N4
4 only Si3N4
5 47/cos u Be,Si3N4
6 a la carte
7 Be+0xides, Si3N4
8 47u Be + Si02
9 only Si02
10 only 125u Be and air
output: FILTER -a nfilter x 2 string matrix
fd -filter thickness in microns, column matrix
£f -fixed filters O:angular dependent thickness, 1i:fixed

infostr -string describing the filter set



4 THE FUNCTION DICTIONARY 36

get_spectrum

[anton.efficiency] -------------

function [KEV,EDIST,spec,infostr]=get_spectrum(spec,parm,peak,dens)

input:
spec, an integer: parm:
i: wvisible - IR wavelength in nm
2: Plasma Bremsstrahlung temperature in keV
3: 1line integrated Plasma central T in keV
4: W-Xray source source voltage in kV
peak peaking factor
dens density exponent
outputs: KEV vector of photon energies in keV
EDIST normalised energy distribution
(sum(EDIST)=1)
infostr a string describing the spectrum

subroutines: xrs_spectrum(U,KEV) gets fits to experimental XRS-PHA-spectra

MA /1094 === m == m oo



4 THE FUNCTION DICTIONARY 37

get xtomo_data

----[anton.public]
function

[sig,t]=get_xtomo_data(shot,t1,t2,dt,fans,angfact);

input shot TCV shot #
t1 start time
t2 stop time
dt timestep
fans camera switch, e.g. [0 00000101 0];
angfact etendue, size: [20 x 10]

output sig xtomo signals, size: [sum(fans) x length(t)]
t time

ATTENTION: length(time) may be shorter than foreseen !!

----- MA 1995



4 THE FUNCTION DICTIONARY 38

get_xtomo_gains

----- [anton.public]
function gains = get_xtomo_gains(shot);

emerged from MJD’s XTOMOSEQ/XTOMO_LOAD_GAINS

purpose: load gains of a certain shot nr. from the database

usage: ’gains’ is a row vector containing the gains of
[array_001(det.1..020), array_002, det. 001...020 etc]



4 THE FUNCTION DICTIONARY 39

granfun

--- [anton.tomofour]granfun.m

function [g,xgran,ygran,p,phi,radius,nlines,nzcho,nzpts]=...

granfun(f,m_max,l_max,i_m,i_pl,i_p2,xchord,ychord,xpix,ypix,con_x,con_y,cx,cy)

output:
g emissivity, column vector
p,phi angle and impact parameter of lines of sight
radius radius of the inversion region
nlines numbers of chords which are taken into account
nzcho number of zero chords added
nzpts number of zero points added
input:
£ chord brightness (data,column vector)
m_max max number of poloidal harmonics
1_max max degree of Zernike polynomials (radial function)
i_m 1: use pseudoinverse from SVD to get aml-coeffs
2: use regularization method to get aml-coeffs
3: use '\’ - dxml routine
i_pl i: plot p,phi 0: don’t
i_p2 1: plot 5§ most important harmonics ,0: don’t
x/ychord lines of sight
x/ypix pixel grid for display
con_x,con_y,
cx,cy optional, LCFS and magnetic axis from LIUQE
subroutines: [phi,p]=phip(xchord,ychord,cx,cy); phi, p of chords
zpol_ml=rml(m_max,l_max,rr); Zernike polyn.
W=wml(m_max,l_max,p,phi,nl,nzcho,nzpts); W-matrix

[con_x,con_y,cx,cyl=rect_cont(xmin,xmax,ymin,ymax)

algorithm: Granetz method for tomographic inversion

---- M.Anton 23/1/95 —=---------mmmm e e e



4 THE FUNCTION DICTIONARY 40

linabs

--------- [ANTON.EFFICIENCY]

function LINA=LINABS(£filt,KEV)

arguments FILT: column vector of elements like [’BE’;..]
KEV: vector of photon energies in keV
returns LINA: a matrix with as much rows as FILT and as much

columns as KEV

calculates linear absorption coefficients (unit 1/mu)
in the energy range given by KEV
cross section calculations are based on
SX-ray cross-section data in file [ANTON.MATLAB]CROS2.M
M. Anton Jun 1993
the whole thing is extracted from MICHAEL DUTCH’s diode_resp.m
modif for matlab4 23.6.94



4 THE FUNCTION DICTIONARY 41

maxenttcv

function
[X,chi2]=maxenttcv(mode,Y,dY,T,zrs,display,lambda,epsi,eps2,gamma,Xinit)
Maximum entropy algorithm

Input: - mode: maximum entropy algorithm [1,1]
- (1) Paraboloid
- (2) Davidon-Fletcher-Powell
- (3) Gull-Daniell-Delsuc
- (4) Gull-Daniell-Wu

- Y: normalized line-integrated emission [nchord,1]

- dY: relative error of the line-integrated emission [nchord,1]

- T: matrix of transfer between the local emissivity and the line
integrated emission [nchord,ncell]

- zrs: a fictive chord is added to ensure that cells which are not
crossed by any chord do not contribute to the local emission [1,1]
(optional,default = 1)

- display: plot the convergence in real-time (default = 0) [1,1]

0.005)
0.005)

- gamma: convergence parameter (optional,default = 2)

- epsl: convergence parameter (optional,default

- eps2: convergence parameter (optional,default

- lambda: Lagrange multiplier (optional,default = 1e-9)
- Xinit: initial guess for the local emissivity (optional, default = flat
profile) [1,ncell]

- X: local emissivity [1,ncelll
- chi2: global error between Y and T*X (chi2<= 1 for an accurate

inversion) [1,1]

by Y.PEYSSON CEA-DRFC 13/07/1994 <peysson@fedv09.cad.cea.fr>



4 THE FUNCTION DICTIONARY 42

makem_1

-~--[anton.tcvti]---

function M=makem_1(Y,T,xpix,ypix,flat)

set up flat default model with zero border

(used for different Xtomo algorithms, regulo_ , max_ent)
input: Y line int data
T transfer matrix
xpix
ypix pixel coordinates
flat 1: totally flat model, just borders set zero

0: simple estimation used (see HOlland and Navratil)

output:M default model for the emissivities
------------- MA 2/12/94 -------—--—=—cme—e



4 THE FUNCTION DICTIONARY 43

makem 2

~~~-[anton.tcvti]---

function M=makem_2(Y,T,xpix,ypix,con_x,con_y,cx,cy,flat);

set up flat default model with zero border

(used for different Xtomo algorithms, regulo_ , max_ent)
input: Y line int data
T transfer matrix
xpix
ypix pixel coordinates
con_x... LCFS contour and magnetic axis
flat 1: totally flat model, just borders set zero

0: simple estimation used (see HOlland and Navratil)

output:M default model for the emissivities



4 THE FUNCTION DICTIONARY 44

mem _wvl

---[anton.maxent]

function [X,chi2,alphaopt,S,levi,ppdb]=mem_wvl(Y,dY,T,alphaO,M)

Bayesian MaxEnt algorithm

input: Y line integrated data size: nl x 1
dY RELATIVE errors of Y size: nl x 1
T transfer matrix size: nl x npix

alpha0 initial value for regularisation parameter alpha size: 1x1

M default model size: npix x 1
output: X inversion result size: npix x 1
chi2 its chisquare
Smem its information entropy

alphaopt the regularisation parameter

levi the logarithm of the alpha evidence

ppdb posterior probability of the solution in dB
subroutines:

makem make the default model if not supplied

pgoldsec golden section search

pfixedalpha probability of result for fixed alpha, MAIN SUBROUTINE

Algorithms: W.v.d.Linden, IPP Garching Ber. OP & NUMERICAL RECIPES
Matlab implementation: M.Anton CRPP
--------- 11/94 & 12/10/95-----~-~===-



4 THE FUNCTION DICTIONARY

minfisher_reg

45

tomographic inversion using the minimum fisher formalism

use: [g,chi2]=minfisher_reg(f,df,T,xmesh,ymesh,i_disp,i_zero,g_model)
outputs: g [nx*ny x 1] reconstructed emissivity distribution
chi2 [1 x 1] reduced chisquare, i.e.
chi2=(Ts*g-£fs)’*(Ts*g-£fs)/length(£f)
where Ts=diag(1./(df.*£f))*T,fs=1./df
inputs: £ [n1 x 1] chord brightness
daf [nl x 1] RELATIVE errors of f
T [nl x nx*ny] transfer matrix

xmesh  [1 x nx]
ymesh  [1 x ny]
i_disp [1 x 1]

i_bord [1 x 1]

g.model [nx*ny x 1]

---- Serge Sagbo --------s-oo—m—o—o——o
---- Informatique 4 eme annee ------
----- Projet de 7e semestre ————--
----- Responsable: Mathias Anton ----
---- CRPP/EPFL/1995-1996 @  —------
---- Creation: 21-11-96 = ------
----- Version : 23-1-96 e et

x-coordinates of pixel centers
y-coordinates of pixel centers

a flag,

if 0, no output during iteration

if 1, the actual value for chi2 is
displayed during each iteration.

a flag,

if 0, boundary conditions are not

taken into account; if 1, the default
model m is used to modify the T-matrix
to assure g=zero where the default
model g_model is =zero

(see regulo_2d_tcvti.m)

the default model for g; g_model is OPTIONAL
if not specified, g _model is calculated
within the routine. used only if

i_zero==1.(see regulo_2d_tcvti.m)



4 THE FUNCTION DICTIONARY 46

omgrid_main

----[anton.public]

function [OMEGA,rho_grid,zet_grid]=omgrid_main(i_detec,fans)

inputs:
i_detec: =2: Xtomo prototype cameras (shot# < 6768)
=1: Xtomo 9-cameras (shot# > 682x)
fans: camera switch, 1=on,0=off (1x10)
outputs:

files named ’raumwinkel_#i##.mat’ in [anton.public.raumwinkel]

which are used by the function t_omgrid

uses:

omgrid_3d.m



4 THE FUNCTION DICTIONARY 47

omgrid_3d

---- [anton.tcvtil

function
[omega,rho_grid,zet_grid,dV]=omgrid_3d(Kbi,Kb2,Kb3,Kb4,Kd1,Kd2,Kd3,Kd4,ivert);

Calculates a 2D-matrix omega from a 3D grid definde inside omgrid_3d.
The grid fills approximately a 40cm thick poloidal slice

of the TCV vacuum vessel (’thick’: in toroidal direction)

input data: Kbi..4: midpoints of the edges of the aperture
Kd1i. .4: detector

each K has three components:

K..(1): radial rho

(2): vertical =zet
(3): toroidal tee
K..1&2: midpoints of edge ’lines’
in rho-zet-plane
K..3%4 midpoints of edges
in tee-zet-plane
ivert: a flag, determines if the detector ’looks’

horizontally or vertically

output: not used in the main routine omgrid _main.m. Just dummies....

uses: projbl.m



4 THE FUNCTION DICTIONARY 48

pfixedalpha

~---[anton.maxent]---

function [1Pa,chi2,S,E]l=pfixedalpha(D,Dtild,sigma,T,Ttild,E,M,alpha)

input D: line integrated data

sigma: their standard deviations

E: initial guess for the emissivity

M: default model

T: Transfer matrix

alpha: regularisation parameter

Ttild: T/sigma

Dtild: D/sigma convenient definitions
output 1Pa: log posterior probability

chi2:

S: information entropy of the solution with resp. to M

E: emissivity solution for given alpha

LPS-approach. Newton iteration for every call.

Algorithm by W.von der Linden, MPG-IPP Garching

---matlab: MA 30/11/94-————=————-——— o



4 THE FUNCTION DICTIONARY 49

pgoldsec

---[anton.maxent] ---

function [1Popt,alphaopt,chi2opt,Sopt,Eoptl= ...
pgoldsec(ax,bx,cx,fa,fb,fc,D,Dtild,sigma,T,Ttild,E,M);

golden section search (NUMERICAL RECIPES) modified for p(alpha), alpha>0

subroutine pfixedalpha calculates the posterior probability

Palpha for fixed regularisation parameter alpha
--- matlab implementation: MA 1/12/94
phip
|
--- [anton.tomofour]
function [phi,p]l=phip(xchord,ychord,cx,cy)
subroutine of granfun.m

calculate phi and p for the cormack tomography method

from xchord,ychord and the center of plasma cx, cy

————— M.Anton 23/1/95



4 THE FUNCTION DICTIONARY 50

plot_vessel

---[anton.matlab]
function plot_vessel(rzvin,rzvout)
rzvin,rzvout contain the coordinates of the vessel in cm, stored

in tcv_vesc.mat
--------- MA 1994

preblur
|

--- [anton.maxent]

function Tb=preblur(T,b,nx,ny)

output:Tb preblurred T-matrix
inputs:T 'virgin’ T matrix
b preblur width (in pixels)
nx number of hori. pixels
ny number of vert. pixel



4 THE FUNCTION DICTIONARY 51

projbl

--- [anton.public] —-——-—=—=— s o
function [x11,y1l1,x12,y12]=projbl(xbi,ybl,xb2,yb2,xd1,yd1,xd2,yd2,xi,yi)

Calculates the projection of two points xbil,xb2,ybl,yb2 on a line
defined by xd1,yd1,xd2,yd2. Point of projection is xi,yi.

sizes: xbl,ybl,xb2,yb2,xd1,yd1,xd2,yd2 1x1
xi,yi arbitrary
x11,y11,x12,y12 same size as xi,yi

used by omgrid_3d.m

mmmm MA 29/B/95 === mm oo e e



4 THE FUNCTION DICTIONARY 52

rect_cont

--- [anton.maxent]
function
[con_x,con_y,cx,cyl=rect_cont(xmin,xmax,ymin,ymax)

returns x/y pairs of a rectangular contour whose corners

are given by the input

--- M.Anton --26.1.95--



4 THE FUNCTION DICTIONARY 53

regulo_2d_tcvti

----[anton.tcvti]---~-
function [Xro,chi2]=regulo_2d_tcvti(Y,dY,T,xpix,ypix,ord,zrs,display,M)

linear regularisation methods of degree 0..3 (NUMERICAL RECIPES)
version ..2d: gradients and laplacian in really 2 dimensions

inputs: -Y: line-integrated measurements [nl x n_timesteps]
-dY: orrors
-T: transfer matrix (corresponds to a matrix)
-xpix: pixel coordinates
-ypix: pixel coordinates
-ord: order of linear regularisation (0,1,2)
-Zrs: add zero chord if 1, optional, defaunlt zero
~-display
display iteration proceedings if 1, optional
-M: default model, optional
output: -Xro: inversion result, [npix x n_timesteps]

----MA 31/8/95: some changes concerning M with respect to older versions ---



4 THE FUNCTION DICTIONARY 54

rml

--- [anton.tomofour]

function R=rml(m_max,l_max,r)

calculation of Zernike polynomial coefficients, subroutine of granfun.m

input: r radial vector (0<=r<=1)
m_max maximum m-number
1_max maximum 1

output: R values of Zernike polynomials

size [length(r) x (2*(m_max+1)-1)*(1l_max+1)]
~---- MA 1/95

tcvti_chk _mds

---- [anton.tcvtil
function status=tcvti_chk_mds(shot)
checks, if there are already Xtomo results written to the MDS results tree

status=1: yes, there are data

0: no, all is empty



4 THE FUNCTION DICTIONARY 55

tcvti_get_mds

~~-- [anton.tcvtil
function [rm,zm,t,X,calf,ct,cpara,ctxt,mtxt,conf]l=tcvti_get_mds(shot);

goet tcvti - results from the mds- results tree

input: shot [1 x 1]
output:rm pixel coordinates [nr x 1]
zm idem [nz x 1]
t times for the slices inverted [timesteps x 1]
X normalised emissivity (max=1) [npixels x timesteps]
calf calibration factor, [1 x 1]
if -1: [a.u.], else [W m~-3]
ct times where diff. cal. parms
had to be chosen [? x 1]
cpara parameters for the calibration [length(ct) x 6]
ctxt string, comment on calibration
mtxt string, comment on inversion method
conf confidence, -2 ... 2, optional



4 THE FUNCTION DICTIONARY 56

tcvti_merge mds

----- [anton.tcvti]

function [mesh_flag,meth_flag,calf_flag,cali_flag]=...

tcvti_merge_mds(shot,rm,zm,t,X,calf,ct,cpara,ctxt,mtxt,conf)

merges new Xtomo data with already existing ones, if possible

if not, see flags. If times are identical, old data are replaced.

out: mesh_flag =0 if meshes incompatible
meth_flag =0 if different methods were used
calf_flag =0 calibrated and uncalibrated data cant be mixed
mix_flag =0 if data are just added, 1 if inserted
cali_flag =0 inversion res can only be inserted, if the

same calibr. parameters are used. if they are

just appended, cali_flag=1 by default.

in:  shot [1 x 1]
m pixel coordinates [1 x nr]
zm idem [1 x nz]
t times for the slices inverted [1 x timesteps]
X normalised emissivity (max=1) [npixels x timesteps]
calf calibration factor (1 x 1]
ct calibration time
cpara parameters for the calibration [1 x 6]
ctxt string, comment on calibration
mtxt string, comment on inversion method
conf confidence, -2 ... 2, optional (def=-2)

----------- MA 1/9/95 ===mmm e m oo e e e



4 THE FUNCTION DICTIONARY 57

tcvti_store_mds

_____ [anton.tcvti]

function ....

tcvti_store_mds(shot,rm,zm,t,X,calf,ct,cpara,ctxt,mtxt,conf);

store tcvti - results in the mds- results tree.

ACHTUNG: whatever may be there will be overwritten.

shot

zm

calf
cpara
ct
ctxt
mtxt

conf

arguments:
[1 x 1]
pixel coordinates [1 x nr]
idem [1 x nz]
times for the slices inverted [1 x timesteps]
normalised emissivity (max=1) [npixels x timesteps]
calibration factor
parameters for the calibration [1 x 6]
’calibration time’ [1 x 1]

string, comment on calibration
string, comment on inversion method

confidence, -2 ... 2, optional

see also TCVTI_MERGE_MDS and TCVTI_CHK_MDS



4 THE FUNCTION DICTIONARY 58

tevxti

--- [anton.tcvxti]

tcvxti.m: scriptfile, launches tcvxti_uifun
it’s possible to peek at all variables
DANGER: everything’s CLEARED and CLOSED if you call this script!
calls TCVXTI_UIFUN(’initialize’)

———————— MA 1995

tcvxti getlefs

----- [anton.tcvxtil
function
[con_xt,con_yt,c_xt,c_yt,c_times]=tcvxti_getlcfs(shot,times);
returns matrices of the contours of the LCFS from LIUQE for #shot
as well as the magnetic axis. "c_times" contains the LIUQE times
which were nearest to the values specified in the vector "times".
size of con_xt e.g. is [npts_contour x length(c_times)], size of

c_yt is [1 x length(c_times)].

------- MA 1995



4 THE FUNCTION DICTIONARY 59

tcvxti_getpsi

_____ [anton.tcvxti]

function
[psi_mesh,c_times]=tcvxti_getpsi(shot,times,xmesh,ymesh)

returns matrices of the contours of PSI/PSI_AXIS from LIUQE #shot
"c_times" contains the LIUQE times which were nearest to the

values specified in the vector "times". PSI is interpolated on

the meshgrid “xmesh,ymesh". One timeslice is stored in one column of
"psi_mesh”, to get the values in the right order, you have to do a
RESHAPE(psi_mesh(:,N),length(YMESH),length(XMESH)).
N=1...length(c_times).

——————— MA 1995

tcvxti_simulant

_____ [anton.tcvxtil

simulate a set of x-ray emissivity date and store them.
parameters have to be edited in the script file

named FILENAME without extension,please.

function tevxti_simulant(filename)

example: ’filename’=’sim_8100_1°

---- MA 25/1/1996



4 THE FUNCTION DICTIONARY 60

tcvxti_setgrid

-~~~ [anton.tcvxtil

function

[xmin,xmax,ymin,ymax,xmesh, ymesh]=tcvxti_setgrid(set,nx,argl,arg2,arg3,args);
set up pixelgrid coordinates for xtomo

inputs set specifies the kind of setup, if set equals
i: manual setup
-> argl=pcx, the grid center x coordinate
arg2=pcy the grid center y coordinate
arg3=wx, the horizontal width of the grid
arg4=wy, the vert, width. ALL UNITS [CM] !
2: use LIUQE for a specified time
-> argl=shot,arg2=time
(everything else is ignored)
3: use LIUQE for the whole shot
-> argi=shot (everything else is ignored)
4: got setup from MDS results tree
-> argi=shot (nx and other args ignored)

output vectors xmesh, ymesh specifying the CENTER coordinates of
the pixel grid. xmin ... ymax give the corners of the

outermost border of the grid



4 THE FUNCTION DICTIONARY 61

tcvti_testphip

------- [anton.tcvtil
function
tcvti_testphip(xchord,ychord,con_x,con_y,cx,cy,xmin,xmax,ymin,ymax)
utility to plot the (p,phi)-representation (for GRANETZ inversion)
of the chords (xchord,ychord) and the LCFS as well as of a rectangle
specified by xmin ... ymax with respect to the center cx,cy.
uses

[phi,pl=phip(xchord,ychord,cx,cy);

[con_x,con_y,cx,cyl=rect_cont(xmin,xmax,ymin,ymax);

---- MA 1995



4 THE FUNCTION DICTIONARY 62

tevxti_uifun

~--- [anton.tcvxti]

function tcvxti_uifun(action)

uli interface for x-ray tomography. call preferably via
the script file TCVXTI.M, please. otherwise serious

problems may occur ...

--- MA 19956



4 THE FUNCTION DICTIONARY 63

tmat _standard

--- [anton.maxent]
function
[TT,numdet]=tmat_standard(xchord,ychord,xmin,xmax,ymin,ymax,nx,ny)

a fast algorithm to calculate the lengths of the chords given by
"xchord,ychord" in pixels of a grid specified by the other inputs

input

xchord,ychord: endpoints of lines of sight, size [2 x nl]

xmin...ymax: corners of pixel grid
nx,ny: number of pixels horizontal,vertical
output
TT: transfermatrix [length(numdet) x nx*ny],
TT(1,i) is the length of chord 1 in pixel i
numdet: numbers of ’active’ lines of sight, usually

length(numdet) <= nl

------------------ M.Anton 9.8.94 / 2.12.94



4 THE FUNCTION DICTIONARY 64

t_omgrid

---- [anton.public]
function [T,numdet]=t_omgrid(fans,xmin,xmax,ymin,ymax,nx,ny);
calculation of t matrix for a rectangular grid using precalculated

matrices of solid angles for all detectors and a grid of 0.5x0.5xicm~3

matrices are stored in [anton.public.raumwinkel]raumwinkel_#.mat

----- MA 30/5/95 + 23/11/95



4 THE FUNCTION DICTIONARY 65

wml

-~~~ [anton.tomofour]

function W=wml(m_max,l_max,p,phi,nl,nzcho,nzpts)

calculation of Granetz’ W-matrix

input:

output:

---- MA 1/95

p,phi

m_max
1_max
nl

nzcho

nzpts

impact parameter and corr. angle of the lines of sight
size [nl x 1]

maximum m-number

maximum 1

number of ’real’ lines of sight

number of zero chords added

number of zero points added

W-matrix
size [ nl x (2(m_max+1)-1)*(1_max+1)]



4 THE FUNCTION DICTIONARY 66

Xxrs_spectrum

----- [anton.efficiency]
function EDIST=xrs_spectrum(UXS,KEV);

inputs -KEV: a vector of Energies in keV
-UXS: the voltage of the Xray source

output -EDIST: a normalized energy distribution (i.e. integral=1)
of same size as KEV
is given only for a restricted set of voltages for
which the spectra have been measured. xrs_spectrum

gives a fit to the experimental spectra



4 THE FUNCTION DICTIONARY 67

xtomo_geometry

----[anton.public]
function

[fans,vangle,xchord,ychord,aomega,angfact]=xtomo_geometry(i_detec,fans);

inputs:
i_detec: =2: Xtomo prototype cameras (shot# < 6768)
=1: Xtomo 9-cameras (shot# > 682x)
outputs:
fans: camera switch, 1=on,0=off (1x10)

vangle: angle between detect. surface normal and pos. x-axis (1x10)
xchord: two x-coordinates (2xnl) in [cm] and

ychord: +two y-coord. for each line (2xnl), they specify start + end points
aomega: etendue in mm~2 x steradians

angfact: angular factors, inverse of relative etendue (throughput) (20x10)

uses:
AOMEGA=etendue_n2(bix,bly,blz,b2x,b2y,b2z,201,202,X0,cw);

angular_fact_*.mat , ’*’=i_detec



4 THE FUNCTION DICTIONARY 68

xtomo_calibrate

--- [anton.public] ---

function

[corr,etal=xtomo_calibrate(i_detec,i_dioda,i_spec,fans,funpara,KEV,EDIST)

output corr calibration factors, if i_dioda==1:

5% correction (up) for 1st and last diode

input
i_detec 1: Xtomo
2: Xtomo Prototypes
i_dioda 0: L=200,dp+=0.5
i1: exper. L,dp+
i_spec 0: same spectral distribution
1: simul. spectral dist
fans detectors switch
funpara [funtype,parai,para2...]
KEV photon energies (if i_spec)
EDIST energy distributions (if i_spec)



4 THE FUNCTION DICTIONARY 69

xtomo_simecal

-~~~ [anton.tcvti] ---

function [Y_ideal,Y_etal,Y_eta,etamean,Xinit,KEV,EDIST]=...
xtomo_simcal(i_de,i_di,i_wa,fans,xmesh,ymesh,psi_mesh,funpara);

output:

input:

Y_ideal chord brightness, assuming ideal detectors
Y_etal same, using eta, ignoring real angle of incidence
Y_ eta line integrated signals, taking all into acec.
etamean spectrum averaged efficiency
Xinit emissivity distribution as a func of xmesh,ymesn
KEV,EDIST energy distribution for every line of sight
i_de 1: Xtomo
2: Xtomo Prototypes
i di 0: L=200mu, dp=0.5mu
1: experimental L,dp data
i_wa 1: only Y_ideal
2: Y_ideal & Y_eta0
3: Y_ideal & Y_etal & Y_eta
fans detectors switch
psi_mesh flux on meshgrid defined by
xmesh, ymesh
funpara = [funtype,paral,para2,...]
funtype=1: Ne,Te are polynomials of psi_norm

2:

Ne,Te, from Thomson scattering



A SOME REMARKS ON INVERSION METHODS 70

A Some remarks on inversion methods

A.1 The tomography problem ...

Plasma parameters like temperature, density, and effective charge distribution determine
the quantity and the spectral distribution of the emitted radiation. In toroidal magnetic
fusion devices like tokamaks, the properties of the plasma radiation in the soft X-ray spec-
tral range are assumed to be constant on surfaces of equal poloidal magnetic flux because
of the enhanced transport parallel to these surfaces. The magnetic topology becomes thus
accessible via soft X-ray tomography.

A schematic experimental setup for soft X-ray tomography on a tokamak is displayed
in figure 7. Several pinhole cameras to observe the soft X-ray emission in a poloidal cross
section of the plasma are placed around the torus. Every pinhole camera is equipped with
a number of detectors. The “pinhole” itself is a small aperture, usually a slit, to limit the
field of view of the detector. The aperture and the sensitive area of the detector define a
cone of view, as shown schematically in figure 8. The center of this cone is in the following
referred to as “line of sight”. A Beryllium foil in front of the aperture usually serves to
block off ultraviolet, visible and infrared radiation.

We can define a spectral emissivity G(7, ) which is determined by the plasma radi-
ation itself and by the transmission characteristics of the Be foil. The dimension of G is
power per volume and frequency interval. We assume that the power is radiated isotrop-
ically. Let €24(7) be the solid angle subtended by one of the detectors with the efficiency
ne(v). The total power P, detected by diode #£ (£ =1...n;) equals

P = / dF / dv % . G(Fv)- mu(v) 1)

If the field of view of the detector is sufficiently narrow, we may assume that the emissivity
does not vary on a surface perpendicular to the line of sight S, (see figure 8), so that
d¥ — A(s) X ds, where ds is a line element along the line of sight. This leads to

P = % -/ds/ dv G(7,v) ne(v). (2)
Sy

where the factor (AQ),, the étendue géometrique or optical throughput, could be taken
outside the integral. This can be explained by the fact that the surface area A(s) increases
quadratically with the distance from the detector, while at the same time the solid angle
subtended by the same detector decreases quadratically with distance. With the help of
(2) we can define the chord brightness f; as

P,

fe= (AQ),jor (3)

The dimension of f is obviously power per area.



A SOME REMARKS ON INVERSION METHODS 71

A further, generally applied approximation is to assume that eventual differences in
detector response can be allowed for using a constant calibration factor c; for every diode,
which leads to

fi=ce / ds g(7) (4)
Sy

where the emissivity
oM = [ dv 6(7,v) (5)
has been introduced. In the following we shall assume that ¢; equals unity for all detectors.
(In reality, this is seldom true, see e.g. [2]).
The task of X-ray tomography is to reconstruct the two—dimensional distribution of
the local emissivity ¢ from a limited number of line integrated measurements f;. Mathe-
matically, the problem consist of solving the system of integral equations?

f£:/gds (E:l...m) (6)

St

where the integral is along the line of sight (compare figure 8) and n; is the number of
available measurements. This system of equations is always underdetermined, since we
would need an infinite number of measurements f; to be able to determine g exactly. In
fusion research, the number of line integrated data is usually limited to the order of some
102, which is even farther away from infinity than the 10° available in medical tomography.

2To be precise: it’s a set of inhomogeneous Fredholm equations of the first kind, see e.g. [19].



72

A SOME REMARKS ON INVERSION METHODS

b)

ssivity
d to be

collimated by apertures A, so as to justify an approximation of the field of view by a line.

radiation from a 2D e

ic setup :

a) a schemati

The tomography problem

Figure 7

ew Is assume

V1

distribution g is measured by a set of detectors D. The field of

b) the actual setup of the TCV soft X-ray tomography system



A SOME REMARKS ON INVERSION METHODS 73

detector

dQ

aperture

/ r

S/ cross section of the cone of view

Figure 8: The field of view defined by the aperture and the sensitive surface area of the
detector is usually sufficiently narrow to justify an approximation of the cone by a line. §
is the central chord of the field of view, the “line of sight”, Q) is the solid angle subtended
by the detector as seen from the volume element dr.



A SOME REMARKS ON INVERSION METHODS 74

A.2 ... and some ways to solve it

There are essentially two ways to adress the tomography problem:

e It is possible to reduce the number of degrees of freedom by expanding the emissivity
distribution in a set of orthogonal functions. Instead of the distribution g itself, a
limited set of parameters, the coeflicients of the base functions, have to be deter-
mined. If e.g. we choose polar coordinates in a plane, a Fourier decomposition for
the angular part and a polynomial approximation for the radial part of g can be
used. This is done in the Cormack-Granetz algorithm [9), which is widely used in

fusion research.

o The plane where we want to reconstruct the emissivity distribution is subdivided
into quadratic pixels. The size of the pixels has to be sufficiently small to justify the
assumption of constant emissivity within one pixel. At the same time, they have to
be sufficiently big to obtain a system of equations which can be solved.

In the following, we will concentrate on the second possibility.

One advantage of the pixel ansatz is that the system (6) is transformed to a system
of algebraic equations in a very natural way. If we have a 2D pixelgrid with n, horizontal
and n,, vertical pixels, we can store the npy;;e = ng - 1y emissivity values g; as lines of the

column vector g. The n; line integrated data are put into a column vector f. We get

Npizel
fe= Z Tugi (£=1...ng) (M
1=1
or simply
f=Txg (8)

where * denotes usual matrix multiplication. In the simplest approximation, the matrix
element T}; is equal to the length of the chord # £ in pixel # 4. The size of T is ny X npiger,
the number of lines of sight times the number of pixels.

The most obvious idea to solve (8) is to invert T. In most cases this won’t work, either
because we have less equations than unknowns (i.e. the inverse of T does not exist) or,
even if we have ny = npjzel, the matrix T might be badly conditioned. We want a smooth,
stable and unique solution vector g, which we can not obtain with a simple inversion.

For a start, let us assume that we have more line integrated measurements than pixels,

i.€. Tg > Npizel. In that case, we would try to
minimise X’ (9)
with

= Z(z.’TliQi - fl)z (10)

; gt



A SOME REMARKS ON INVERSION METHODS 75

which is the same as
X =(T+xg-FT +(Txg-1) (11)

The exponent T denotes transposition. For convenience, we have used the abbreviations
Ty = Tyi/og and f; = fi/ o4, where oy is the standard deviation of f;.
To minimise x? , we have to derive the normal equations [19] from eqn (11) which read

TT « Txg =TT «f (12)

The solution of the set of normal equations then yields a least-squares-fit solution to the
tomography problem, see for example [5].

If we reduce the number of line integrated data f; and keep the number of pixels fixed,
we observe that a better x2-fit is possible. In the limit of less equations (hence fe’s) than
unknown g;’s, we can always achieve x2 = 0, because then there are too many degrees of
freedom, i.e. there is an infinite number of solutions (“overfitting”). To obtain a unique
(and sensible) solution, we have to require something in addition to x? = min. The general
idea is to look for a minimum of a functional ¢, which may be written as

minimise ¢ = %xz +aR (13)

where R is a regularising functional (hence the letter R). The regularisation parameter a is
a positive number which determines the weighting between the goodness-of-fit, represented
by x?, and the requirements imposed on the solution g by the functional R, e.g. the
smoothness of the solution. In the limit & — 0, the solution is determined by x? alone
as above, in the limit of very large a it is only the smoothing (or whatever we may have
required) which determines the solution. Truth must be somewhere in between, so one
part of the problem is to find a way to choose the “correct” value of the regularisation
parameter, a second part is to find a solution g for a given value of a.

Three different choices of ¢ will be discussed in the following: Linear regularisation,
maximum entropy and a method relying on the Fisher information.



A SOME REMARKS ON INVERSION METHODS 76

/1 pixel

Figure 9: Two ways to attack the tomography problem: we can a) expand g using a limited
set of base functions or b) subdivide the z — y plane into a set of quadratic pixels. The
emissivity in each pixel is assumed to be constant. In the simplest approximation, the
matrix element Ty; is the length of the line of sight Sy in pixel # 1.



A SOME REMARKS ON INVERSION METHODS 7

A.2.1 Linear Regularisation

The first method we want to discuss is the so-called linear regularisation method as detailed
in [19]. If we want a smooth solution, the functional R has to measure the roughness of
the solution somehow.

The simplest approach is to require the solution vector g to have minimum length,
R=gl’=¢g"*g (14)

where || - || denotes the usual euclidean vector norm. This is called zeroeth order regulari-
sation.

We skip first order regularization to discuss second order regularisation in some detail:
The second order linear regularisation tries to minimise the norm of a vector which contains
the values of the second derivative of the solution g,

R = || Agl* = (Ag)” x (Ag) (15)

which means that we look for a solution with minimum curvature. If /A denotes a matrix

representation (finite differences) of the Laplacian, we can write
R=(Lxg)l«(Axg)=gl «ATxAxg (16)
With the help of the definition
H=AT+A (17)
we get from (11) and (13)
minimise ¢=%(i‘*g—f‘)T*(’i‘*g—i’)+gT*H*g (18)
If we set all npize partial derivatives d¢/0g; to zero, we get the normal equations
(TT+«T 4+ aH)xg =TT »f (19)
which have to be solved for g, e.g. by standard methods like LU-decomposition3. To
determine the “correct” a, you start with [19]
a = trace(TT « T)/trace(H) (20)

and tune a, until you achieve x? ~ ny, if the measurement errors o, are known sufficiently
well. For experimental data obtained on TCV, the optimum « is usually found after 2 — 3
iterations. In terms of computing time this corresponds to 6-8 seconds on a DECa station.

It has to be stressed that the equation (19) is the same for all orders of linear regulari-
sation. It’s just the matrix H which has to be modified. For an n’th order regularisation, H
contains the (finite difference) matrix form of the n’th derivative of the solution, analogous
to (15). For zero order regularisation (see (14)), the matrix H is simply the unit matrix?
Higher order algorithms are also possible, one can even think of a mixture of different

orders (“solution close to a differential equation”, see [19]).

31f you use MATLAB, you just employ the ‘\’- operator.
*The pseudoinverse calculated during the solution of (19) for zero order is related to the so-called

Moore-Penrose pseudoinverse [23, 1]



A SOME REMARKS ON INVERSION METHODS 78

A.2.2 Maximum Entropy

There is nothing like the Maximum Entropy method, instead there is a whole lot of algo-
rithms exploiting in one way ore another the information entropy of a probability distribu-
tion as defined by Shannon. The relationship between information theory and statistical
physics has been investigated in two excellent publications by Jaynes [14, 15], who also
references there [14] the “father” of Bayesian statistics, Sir Harold Jeffreys [16].

Different degrees of sophistication and depth of philosophical background are possible.
A brief introduction is provided by [19], although the Bayesian aspect of Maximum En-
tropy is somewhat turned down by the authors. An abordable survey on the theory and
different applications of Bayesian MaxEnt is given in a fairly recent book editet by Buck
and Mackaulay [4]. A review of a variety of MaxEnt algorithms has recently been given
by Djafari (7).

We will start with an algorithm implemented as a MATLAB function by Peysson [18].

The entropy S of a probability distribution g is given by

§=-Y ol n(a}) (21)

with
/ gi gi
% k9 N (22)
where N assures proper normalisation. We use x? as defined above (11) and try to
magzimise ¢ = —%xz +as (23)

The maximisation of —x? is clearly equivalent to a minimisation of x2. The information
entropy S has now taken the place of the regularising functional R, which means our
requirement in addition to a reasonable fit to the data is that the entropy of the solution
g attains its maximum. If no experimental data are available, this is the case when all
pixels have equal emissivity. In a certain sense, the maximum entropy solution is the least
we can expect, it is the most “pessimistic” of all possible solutions.

We can write the expression for the entropy as

T T
§ = -g" xin(g)) = -2« In(5) (24)

where here and in the following functions like In , ezp etec. are understood to act ele-
mentwise on the argument vectors or matrices. The column vector g contains the pixel

emissivities as above. To find an extremal value of ¢, we have to set the partial derivatives
3$/ag,~ =0 for all £ = 1...7pize. The result is

N e - o
g=N-.exp(-S — Z(TT*T*g-{—TT*f)), (25)

which represents an implicit, nonlinear system of equations for the sought—for solution g.
Different fixed-point iteration methods to solve (25) exist, four of which are implemented



A SOME REMARKS ON INVERSION METHODS 79

in Peysson’s MATLAB routine [18]. The most common one has been described by Gull and
Daniell [10], modifications of this method to stabilize the convergence have been proposed
by Wu [27] and Delsuc [6]). The “correct” regularisation parameter « is obtained using the

criterion
X’ ~ny (26)

as for the linear regularisation method (see above). A “typical” tomographic inversion
of data obtained with the soft X-ray camera system on TCV will at least take some 30
seconds for about 6-12 iterations to fine tune a. We will not go into further details but
rather discuss an algorithm by von der Linden [24], which is “really” Bayesian.

It was Sir Harold Jeffreys who re-discoverd Bayes theorem to approach statistics in
a philosophically different way than the usual “frequentist” school of thought, dominated
by Fisher. The general idea of Bayesian statistics is that we assign probabilities in case of
incomplete knowledge of the system under consideration, i.e. probabilities are rather de-
grees of plausibility than relative frequencies of occurence as in the usual frequentist point
of view. Probability theory thus becomes an extension of logic rather than just a tool-
box to handle (seemingly) random data. The original theorem simply relates conditional
probabilities P from two events A and B in the following way:
P(B|A)

P(B)

P(A|B) is the conditional probability of A given that B has occured, P(A) and P(B) are
unconditional probabilities (see e.g. [19, 11] or any textbook on probability theory).

P(A|B) = P(A)- (27)

For so-called inverse problems like tomographic inversion, the theorem can be used in
the following way [11, 24]

P(fe:cp|g’ I)

P(glfemmI) = P(glI) : P(f |I) 3
exTp

(28)

where names and meanings of the symbols are listed below:

fezp experimental, line integrated data (chord brightness)
I any other available information a prior:

g the sought-for emissivity distribution

P(g|I) the probability of the solution prior to any experiment

P(fezp|I) the probability for the experimental data, given only the
prior information I; P(fe;p|I) usually remains unknown

P(fezp|g,I) the probability for the measured data f.;, if g and I were
known, known as the likelihood function

P(g|fezp,I) the so-called posterior probability for the solution g, given
the experimental data f,;, and the a priori information I

The general idea is to search for a maximum of the posterior probability P(g|fezp, ),
i.e. to look for the most probable solution in the sense of Bayesian statistics. To be able



A SOME REMARKS ON INVERSION METHODS 80

to do so, we look at the terms on the right-hand side of equation (28). The denominator
usually remains unknown and serves only as a normalisation constant. The likelihood

function is well-known and can be expressed as
1
P(fezplg, I) x exp (_EXZ > (29)

with x? given by eqn (11), as usual. It can be shown [22] that the most uninformative,

unbiased prior is the entropic one, given by

-ezp(a S). (30)

tJe

a
P I = (— npi:z:el/2 .
(8l1) = ()
Here, the entropy is defined with respect to a default model m of the emissivity g following

S:Zg,‘—-m;—g; ln(% (31)

The entropy § attains its maximum if g is equal to the default model. If we put equations
(29) and (30) together, we see that a maximum of the posterior probability occurs at a

maximum of .
$(o,g)=—5x" +a 8 (32)

which looks rather familiar, the positive number « still being the regularisation parameter.

For a fixed, we have to find the solution g*. Following won der Linden, this can be
done introducing n, Lagrangian parameters A;, thus reducing the number of unknowns
from 7npizer to ng. Maximising (32) under the exact “constraints”

0 = F;- fi(g)
with
fr(g) = 3 Tugi (33)
(34)
is equivalent to maximising
dr=a§— %Z( 55— B)? o Y M(Fr - fulg)) (35)
¢ L

with the ~ designing division by the error oy as above. For ¢, to take on an extremal

value, all partial derivatives have to be zero:
0¢2/0g; =0, 0¢4x/0M¢ =0, and 0¢y/0F, =0 (36)

For fixed A, we get
gi = mi ezp(— > A\Tu), (37)
4



A SOME REMARKS ON INVERSION METHODS 81

which automatically assures that the emissivity is nonnegative. The resulting system of
ng implicit equations for the Lagrangian parameters

i v

has a unique solution which can be determined using a Newton-Raphson scheme [19].
Determining the maximum posterior probability (28) as a function of the regulari-
sation parameter is a rather formidable task, because it involves the evaluation of np;ze-
dimensional integrals. As demonstrated in [24], the integrals become tractable if we expand
the integrand into a Taylor series about the (approximate) solution g*. In that case the

posterior probability can be expressed as

"px':r:el/2 - - —21'_,
Plelfer D) = (57 -[det( w+ S Y T g7 To) | -eonl dlasg”))  (39)

Although quite costly in terms of computer time, this approach to determine a is much
more satisfactory than the “historic” criterion (26). It turns out that the x? of a solution g
with maximum posterior probability may be much smaller than n;. As has been discussed
by von der Linden [24], the “historic” criterion underestimates the information apported by
the data, which is a consequence of the fact that it is simply not adequate. The application
of (26) were justified if we had n, measurements of the same quantity, which is clearly not
the case in tomography or other fields where inverse methods are used.

Another advantage of MaxEnt becomes very clear from eqn (37): negative emissivities,
which do not have a physical sense anyway, are automatically excluded by the algorithm.
This is not the case for the linear regularisation method. A disadvantage of MaxEnt is
the amount of calculations involved as well as the fact that, at least for tomography, the
MaxEnt solution tends to not look “nice” and smooth. This is partly due to the fact that
the pixel emissivities are treated as completely indepent, the values g; are determined
without explicitly considering the emissivity of the neighbouring pixels. A smoothing can
only be achieved if a so-called “preblur” is added (see e.g. [11]).

To do actual calculations, you have to start with some value of a, calculate a solution
g(a), calculate the posterior probability of this solution, try another value of a and so on
to finally bracket the maximum of the posterior probability. Even on a DECa station, it
usually takes at least one minute to obtain a tomographic inversion of TCV soft X ray

data using Bayesian MaxEnt.



A SOME REMARKS ON INVERSION METHODS 82

A.2.3 Minimum Fisher Information

Reinmuth has shown in his diploma thesis [20] that yet another approach can successfully
be used for the assessment of inverse problems, namely the exploit of the so—called Fisher
information. The method is based on the Cramer-Rao inequality

o(g) > % (40)

which states that the variance o(g) of a probability distribution g is greater or equal than
the Fisher Information Iz of that same distribution. The Fisher Information is defined as

Ir = / g_’(z_)2 dz (41)
g(z)
where the prime denotes the derivative with respect to z and we assume that the integral
of g equals unity.
/g(z)dz =1 (42)
If we identify the distribution g with the soft X-ray emissivity, the motivation to use the
Fisher information as a regularising functional becomes clear. We see immediately from the
definition (41), that minimising the Fisher information of g implies a minimisation of the
absolute value of the first derivative of g, as is the case for first order linear regularisation
(see above). But the denominator of the integrand in eqn (41) weighs the smoothing in
the sense that for a fixed contribution to the integral, the absolute value of the derivative
is allowed to be larger if the value of g itself is also large than in a case where g itself is
small. This means that the smoothing is strongest where the values of g are small. For
soft-X-ray tomography, this is a very reasonable assumption: small values of g correspond
to low emissivity, hence low temperature. The contribution of these areas to the chord
brightness f; are small anyway, so not much information about the low—emissivity regions
is contained in the f;. On the other hand we do not want to smooth eventual structure in
the center of the plasma where the emissivity is highest, so the weighted smooth provided
by a minimisation of the Fisher information of g seems to suit our purposes very well.
Instead of trying the hard way of using the Fisher information as indicated in Rein-
muth’s diploma thesis [20], we rather suggest to use the central idea for a modified weighted
linear regularisation method.
For first order linear regularisation, we would try to minimise (13) with the regularising
functional this time given by
R = |lexl? + llgy I (43)

where gx and gy denote the derivatives with respect to = and y, respectively. If we as-
sume that V; and V, are finite-difference matrix representations of the corresponding

differential operators, we can write

R=(V.g)T *(Vx )+ (Vy 8)T +(Vy g) (44)



A SOME REMARKS ON INVERSION METHODS 83

or

R:gT*(VE*Vx+V;‘*Vy)*g. (45)

This means that the matrix H of eqn (19) is given by
H=VI+V,+VIxV, (46)

We are free to add a a diagonal weight matrix W, as long as all elements are greater than
zero (Wy; > 0):
H=VI+WxVy+VS+WxVy (47)

If we set W equal to the unit matrix, we have first order linear regularisation in two
dimension. To minimise the Fisher information of the distribution g, we can not directly
insert 1/g; as a weight, since this would make the method nonlinear. Instead, we propose
an iterative process, where we start with W = 1, the unit matrix. We can now solve the
normal equations (19) with H defined by equation (47), and use the solution obtained for
g to determine a new weight matrix W such that

wS = 6

wi = % bijy g™ >0 i=1...mpga (48)
and ;

W = Wies6;>0, g <0

where the subscript (n) denotes the solution of the n-th iteration. This procedure can be
continued until the change in the elements of the weight matrix is less than a certain limit.
We have thus introduced a regularisation which remains linear, but the solution of which

should have minimum Fisher information. We can write this as
(’i‘T * T + aH(")) * g("'H) =TT «f (49)

where H(") is defined by (47) and (48) and g("+?) is the new solution. It turns out that,
although 4-5 iterations are needed to have stable W-matrix elements, the solution re-
mains almost unchanged after the first iteration. Sagbo has shown in his TP report that
this method provides the best compromise concerning computational time, precision and
“beauty” of the solution compared to all other methods included in the tcvxti-package.
A very nice, smooth and precise solution is obtained after approximately 15-18 seconds
CPU on ELTCAL.



B HOW TO CALCULATE THE T-MATRIX 84

B How to calculate the T-matrix

There are just historical reasons for calling the T-matrix *T-matrix’. which is a complicated
way to state that there aren’t any. Anyhow, the meaning of the T-matrix should be clear
by now ( I hope you read appendix A ...): the element T}; of the matrix T represents the
contribution of pixel # ¢ to the chord brightness f,. The dimension of T is length.

The simplest approximation is to set Ty equal to the length of the line of sight £ in
pixel i, since we assume that the emissivity is a constant inside every pixel. I will not
comment on how to calculate the lengths of the chords in every pixel. This is done (rather
quickly) by the routine tmat_standard.m. Although it’s not too obvious how it’s done,
it should be comprehensive. There is just a small problem: there are two contradictory

requirements for this approximation to be valid!

o the pixels must be small to justify the assumption that the emissivity is constant

within every pixel

e the pixels must be big enough to avoid problems with the assumption of lines of

sight, ¢.e. in principle the whole of the cone segment should be within the same pixel

I will explain the second item a bit further: We saw in appendix B, figure 8 how the
volumic integral can be transformed to a line integral under the assumption that the
emissivity does not vary on a surface perpendicular to the line of sight. However, we have
to keep in mind that the lines of sight are rather cones with a certain spacial extent. If,
for example, a line of sight is placed just near and parallel to the border of one pixel, the
simple approximation of T' as length segment of the chord will produce wrong results, since
all the emissivity is attributed to one pixel instead of an approximately equal distribution
between two pixels, which would be much more realistic. This is illustrated in figure 10.
Another aspect of the same problem is that the size of the cone (the field of view) may be
much bigger than a pixel. Consider for example the field of view of one of the cameras on
top of the vessel and a pixel on the bottom (compare appendix B, figure 7). To overcome
this problem, a rather labourious way to calculate “effective chord lengths” has been taken,
which can be sketched as follows:



B HOW TO CALCULATE THE T-MATRIX 85

o define a 3D rectangular grid which covers the whole poloidal cross section of the
vessel and a toroidal extent of 40cm. The size of each cell is 0.5 X 0.5 x 0.5¢m3.

e calculate for every cell the solid angles subtended by all detectors

e integrate the toroidal direction, taking the curvature of the vessel into account,
to obtain a 0.5cm X 0.5cm 2D mesh of integrated solid angles. Store these grids
seperately for all detectors as raumwinkel ###.mat—files

e calculate the T-matrix for every meshgrid in the following way:

— load the raumwinkel ### .mat file for the detector under consideration

— for all pixels, sum up the solid angles for all cells which are inside a pixel and
multiply by the surface area of the cell

— divide by the étendue géometrique of the corresponding detector to obtain the
“effective length”

— repeat this procedure for all detectors

The first part of this work, the calculation of the 2D solid angle grids, is done by the
routines omgrid main.m, omgrid_3d.m and projbl.m. The main program, omgrid main.m,
should preferably be launched as a batch job. A calculation for the whole set of detectors
may take several hours on ELTCA1.

The second part can be done using the matlab function t_omgrid, which can be used
as a subroutine of tcvxti uifun. However, you will not want to do it too often, since a
calculation of the T-matrix as described above takes several minutes (the simple method
takes some seconds) on ELTCA1. But if you calculate both matrices (for reasons of curiosity,
for example) and compare them, e.g. by doing a pseudocolor plot, the difference is striking
enough: the jumps and bumps seen on the simple approximation of the T-matrix are all
smoothed out. Once the systematic errors on the Xtomo signals have disappeared (due
to the not only new but hopefully better IRD detectors), it will be worthwile to use the

“hard” way ....



B HOW TO CALCULATE THE T-MATRIX 86

b)

R
SRR
o

Figure 10: Some cases where the approximation Ty; = length of line £ in pixel i breaks
down



C HELPFUL PUBLICATIONS 87

C Helpful Publications

References

[1] ABBISS, J.B., ALLEN, J.C., BOCKER, R.P. and WHITEHOUSE, H.J.: in
SPIE Vol. 1767 Inverse Problems in Scattering and Imaging, p93 (1992)

2] ANTON, M, DUTCH, M J and WEISEN, H:
Rev. Sci. Instrum. 66 7 p3762 (July 1995)

(3] ANTON, M, DUTCH, M J and WEISEN, H:
22nd EPS conference on CONTROLLED FUSION AND PLASMA PHYSICS,
Bournemouth UK, 3rd-7th July 1995, Contributed Papers, Volumel9C Part II p389
(1995)

[4] BUCK, B. and MACKAULAY, V. A. (eds.):
“Maximum Entropy in Action” Oxford University Press (1991)

[5] DECOSTE, R.:
Rev. Sci. Instrum. 56 5 p806 (1985)

[6] DELSUC, M.A.:in
“Maximum Entropy and Bayesian Methods”, Ed. J.Skilling, Kluwer Academ. Publ.
p285 (1989)

[7] DJAFARI, A.M.:
Traitement du Signal 11 2 p87 (1994)

(8] DUDOK DE WIT, T., PECQUET, A.-L., VALLET, J.C. and LIMA, R.: Phys. Plas-
mas 1 (10) p3288 (1994)

[9] GRANETZ, R. S. and SMEULDERS, P.:
Nuclear Fusion 28 3 (1989)

[10] GULL S.F. and DANIELL, G.J.:
Nature 272 p686 (1978)

[11] GULL, §.: in
“Maximum Entropy and Bayesian Methods”, Ed. J.Skilling, Kluwer Academ. Publ.
p53 (1989)

[12] HOFMANN, F. and TONETTI, G.:
Nuclear Fusion 28 p1871 (1988)

[13] HOLLAND, A. and NAVRATIL, G. A.:
Rev. Sci. Instrum. 57 8, p1557 (August 1986)



REFERENCES 88

[14] JAYNES, E.T.:
Phys. Rev. 106 4 p620 (1957)

[15] JAYNES, E.T.:
Phys. Rev. 108 2 p171 (1957)

[16] JEFFREYS, H.:
“Theory of probability”, Oxford University Press (1939)

(17] LLOBET, X.: “L’acquisition et la gestion des données du Tokamak TCV”, in “Flash
informatique”, SIC/EPFL F1 3 (1995)

[18] PEYSSON, Y. private communication

(19] PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T.
and FLANNERY, B. P.:
“Numerical Recipes in FORTRAN: The Art of Scientific Computing”, Second Edition,
Cambridge University Press (1992)

[20] REINMUTH, J.:
Diplomarbeit, TU Miinchen / IPP Garching (1994)

[21] SAKURAI, J.J.:
“Modern Quantum Mechanics”, Addison Wesley Publishing Co. (1985)

[22] SKILLING, J.: in
“Maximum Entropy and Bayesian Methods”, Ed. J.Skilling, Kluwer Academ. Publ.
p45 (1989)

[23] STERITI, R. and FIDDY, M.A. in
SPIE Vol. 1767 Inverse Problems in Scattering and Imaging, p112 (1992)

[24] VON DER LINDEN, W.:
Appl. Phys. A 60 p155 (1994)

[25] VON DER LINDEN, W.:
private communication (1994)

[26] VON DER LINDEN, W.:

private communication (1995)

[27] WU, N.L.:
Astron. Astrophys. 139 p555 (1984)



