13 research outputs found

    KIN: a method to infer relatedness from low-coverage ancient DNA

    No full text
    Abstract Genetic kinship of ancient individuals can provide insights into their culture and social hierarchy, and is relevant for downstream genetic analyses. However, estimating relatedness from ancient DNA is difficult due to low-coverage, ascertainment bias, or contamination from various sources. Here, we present KIN, a method to estimate the relatedness of a pair of individuals from the identical-by-descent segments they share. KIN accurately classifies up to 3rd-degree relatives using at least 0.05x sequence coverage and differentiates siblings from parent-child pairs. It incorporates additional models to adjust for contamination and detect inbreeding, which improves classification accuracy

    A late Neanderthal tooth from northeastern Italy

    No full text
    The site of Riparo Broion (Vicenza, northeastern Italy) preserves a stratigraphic sequence documenting the Middle-to-Upper Paleolithic transition, in particular the final Mousterian and the Uluzzian cultures. In 2018, a human tooth was retrieved from a late Mousterian level, representing the first human remain ever found from this rock shelter (Riparo Broion 1). Here, we provide the morphological description and taxonomic assessment of Riparo Broion 1 with the support of classic and virtual morphology, 2D and 3D analysis of the topography of enamel thickness, and DNA analysis. The tooth is an exfoliated right upper deciduous canine, and its general morphology and enamel thickness distribution support attribution to a Neanderthal child. Correspondingly, the mitochondrial DNA sequence from Riparo Broion 1 falls within the known genetic variation of Late Pleistocene Neanderthals, in accordance with newly obtained radiocarbon dates that point to approximately 48 ka cal BP as the most likely minimum age for this specimen. The present work describes novel and direct evidence of the late Neanderthal occupation in northern Italy that preceded the marked cultural and technological shift documented by the Uluzzian layers in the archaeological sequence at Riparo Broion. Here, we provide a new full morphological, morphometric, and taxonomic analysis of Riparo Broion 1, in addition to generating the wider reference sample of Neanderthal and modern human upper deciduous canines. This research contributes to increasing the sample of fossil remains from Italy, as well as the number of currently available upper deciduous canines, which are presently poorly documented in the scientific literature

    Recent Adaptive Acquisition by African Rainforest Hunter-Gatherers of the Late Pleistocene Sickle-Cell Mutation Suggests Past Differences in Malaria Exposure

    No full text
    International audienceThe hemoglobin βS sickle mutation is a textbook case in which natural selection maintains a deleterious mutation at high frequency in the human population. Homozygous individuals for this mutation develop sickle-cell disease, whereas heterozygotes benefit from higher protection against severe malaria. Because the overdominant βS allele should be purged almost immediately from the population in the absence of malaria, the study of the evolutionary history of this iconic mutation can provide important information about the history of human exposure to malaria. Here, we sought to increase our understanding of the origins and time depth of the βS mutation in populations with different lifestyles and ecologies, and we analyzed the diversity of HBB in 479 individuals from 13 populations of African farmers and rainforest hunter-gatherers. Using an approximate Bayesian computation method, we estimated the age of the βS allele while explicitly accounting for population subdivision, past demography, and balancing selection. When the effects of balancing selection are taken into account, our analyses indicate a single emergence of βS in the ancestors of present-day agriculturalist populations ∼22,000 years ago. Furthermore, we show that rainforest hunter-gatherers have more recently acquired the βS mutation from the ancestors of agriculturalists through adaptive gene flow during the last ∼6,000 years. Together, our results provide evidence for a more ancient exposure to malarial pressures among the ancestors of agriculturalists than previously appreciated, and they suggest that rainforest hunter-gatherers have been increasingly exposed to malaria during the last millennia

    A late Neanderthal tooth from northeastern Italy

    No full text
    The site of Riparo Broion (Vicenza, northeastern Italy) preserves a stratigraphic sequence documenting the Middle-to-Upper Paleolithic transition, in particular the final Mousterian and the Uluzzian cultures. In 2018, a human tooth was retrieved from a late Mousterian level, representing the first human remain ever found from this rock shelter (Riparo Broion 1). Here, we provide the morphological description and taxonomic assessment of Riparo Broion 1 with the support of classic and virtual morphology, 2D and 3D analysis of the topography of enamel thickness, and DNA analysis. The tooth is an exfoliated right upper deciduous canine, and its general morphology and enamel thickness distribution support attribution to a Neanderthal child. Correspondingly, the mitochondrial DNA sequence from Riparo Broion 1 falls within the known genetic variation of Late Pleistocene Neanderthals, in accordance with newly obtained radiocarbon dates that point to approximately 48 ka cal BP as the most likely minimum age for this specimen. The present work describes novel and direct evidence of the late Neanderthal occupation in northern Italy that preceded the marked cultural and technological shift documented by the Uluzzian layers in the archaeological sequence at Riparo Broion. Here, we provide a new full morphological, morphometric, and taxonomic analysis of Riparo Broion 1, in addition to generating the wider reference sample of Neanderthal and modern human upper deciduous canines. This research contributes to increasing the sample of fossil remains from Italy, as well as the number of currently available upper deciduous canines, which are presently poorly documented in the scientific literature

    A high-coverage Neandertal genome from Vindija Cave in Croatia

    No full text
    To date, the only Neandertal genome that has been sequenced to high quality is from an individual found in Southern Siberia. We sequenced the genome of a female Neandertal from ~50,000 years ago from Vindija Cave, Croatia, to ~30-fold genomic coverage. She carried 1.6 differences per 10,000 base pairs between the two copies of her genome, fewer than present-day humans, suggesting that Neandertal populations were of small size. Our analyses indicate that she was more closely related to the Neandertals that mixed with the ancestors of present-day humans living outside of sub-Saharan Africa than the previously sequenced Neandertal from Siberia, allowing 10 to 20% more Neandertal DNA to be identified in present-day humans, including variants involved in low-density lipoprotein cholesterol concentrations, schizophrenia, and other diseases

    A high-coverage Neandertal genome from Vindija Cave in Croatia

    No full text
    To date, the only Neandertal genome that has been sequenced to high quality is from an individual found in Southern Siberia. We sequenced the genome of a female Neandertal from ~50,000 years ago from Vindija Cave, Croatia, to ~30-fold genomic coverage. She carried 1.6 differences per 10,000 base pairs between the two copies of her genome, fewer than present-day humans, suggesting that Neandertal populations were of small size. Our analyses indicate that she was more closely related to the Neandertals that mixed with the ancestors of present-day humans living outside of sub-Saharan Africa than the previously sequenced Neandertal from Siberia, allowing 10 to 20% more Neandertal DNA to be identified in present-day humans, including variants involved in low-density lipoprotein cholesterol concentrations, schizophrenia, and other diseases

    Genetic insights into the social organization of Neanderthals

    No full text
    Genomic analyses of Neanderthals have previously provided insights into their population history and relationship to modern humans1–8, but the social organization of Neanderthal communities remains poorly understood. Here we present genetic data for 13 Neanderthals from two Middle Palaeolithic sites in the Altai Mountains of southern Siberia: 11 from Chagyrskaya Cave9,10 and 2 from Okladnikov Cave11—making this one of the largest genetic studies of a Neanderthal population to date. We used hybridization capture to obtain genome-wide nuclear data, as well as mitochondrial and Y-chromosome sequences. Some Chagyrskaya individuals were closely related, including a father–daughter pair and a pair of second-degree relatives, indicating that at least some of the individuals lived at the same time. Up to one-third of these individuals’ genomes had long segments of homozygosity, suggesting that the Chagyrskaya Neanderthals were part of a small community. In addition, the Y-chromosome diversity is an order of magnitude lower than the mitochondrial diversity, a pattern that we found is best explained by female migration between communities. Thus, the genetic data presented here provide a detailed documentation of the social organization of an isolated Neanderthal community at the easternmost extent of their known range
    corecore