79 research outputs found

    Solid-State Excitation Laser for Laser-Ultrasonics

    Get PDF
    The inspection speed of laser-ultrasonics compared with conventional ultrasonic testing is limited by the pulse repetition rate of the excitation laser. The maximum pulse repetition rate reported up to now for CO2-lasers, which are presently used for nearly all systems, is in the range of 400 Hz. In this paper a new approach based on a diode-pumped solid-state laser is discussed, which is currently being developed. This new excitation laser is designed for a repetition rate of 1 kHz and will operate at a mid-IR wavelength of 3.3 m. The higher repeti-tion rate enables a higher inspection speed, whereas the mid-IR wavelength anticipates a better coupling efficiency. The total power for pumping the laser crystals is transported via flexible optical fibres to the compact laser head, thus allowing operation on a robot arm. The laser head consists of a master oscillator feeding several lines of power amplifiers and in-cludes nonlinear optical wavelength conversion by an optical parametric process. It is char-acterized by a modular construction which provides optimal conditions for operation at high average power as well as for easy maintenance. These features will enable building reliable, long-lived, rugged, smart laser ultrasonic systems in futur

    Noise in laser speckle correlation and imaging techniques

    Get PDF
    We study the noise of the intensity variance and of the intensity correlation and structure functions measured in light scattering from a random medium in the case when these quantities are obtained by averaging over a finite number N of pixels of a digital camera. We show that the noise scales as 1/N in all cases and that it is sensitive to correlations of signals corresponding to adjacent pixels as well as to the effective time averaging (due to the finite sampling time) and spatial averaging (due to the finite pixel size). Our results provide a guide to estimation of noise level in such applications as the multi-speckle dynamic light scattering, time-resolved correlation spectroscopy, speckle visibility spectroscopy, laser speckle imaging etc.Comment: submitted 14 May 201

    Whole-scalp EEG mapping of somatosensory evoked potentials in macaque monkeys

    Get PDF

    Whole-scalp EEG mapping of somatosensory evoked potentials in macaque monkeys

    Get PDF
    High-density scalp EEG recordings are widely used to study whole-brain neuronal networks in humans non-invasively. Here, we validate EEG mapping of somatosensory evoked potentials (SSEPs) in macaque monkeys (Macaca fascicularis) for the long-term investigation of large-scale neuronal networks and their reorganisation after lesions requiring a craniotomy. SSEPs were acquired from 33 scalp electrodes in five adult anaesthetized animals after electrical median or tibial nerve stimulation. SSEP scalp potential maps were identified by cluster analysis and identified in individual recordings. A distributed, linear inverse solution was used to estimate the intracortical sources of the scalp potentials. SSEPs were characterised by a sequence of components with unique scalp topographies. Source analysis confirmed that median nerve SSEP component maps were in accordance with the somatotopic organisation of the sensorimotor cortex. Most importantly, SSEP recordings were stable both intra- and interindividually. We aim to apply this method to the study of recovery and reorganisation of large-scale neuronal networks following a focal cortical lesion requiring a craniotomy. As a prerequisite, the present study demonstrated that a 300-mm2 unilateral craniotomy over the sensorimotor cortex necessary to induce a cortical lesion, followed by bone flap repositioning, suture and gap plugging with calcium phosphate cement, did not induce major distortions of the SSEPs. In conclusion, SSEPs can be successfully and reproducibly recorded from high-density EEG caps in macaque monkeys before and after a craniotomy, opening new possibilities for the long-term follow-up of the cortical reorganisation of large-scale networks in macaque monkeys after a cortical lesion

    OPTIMAL PLA COLUMN FOLDING

    No full text
    60 MHz. Since special precautions for frequency-stabilised operation were not taken, the TMC laser exhibited a fre-quency jitter of about 50MHz/10s. Thus, the linewidth could only be determined to be less than 1 MHz

    Diode-pumped Ba(NO 3 ) 2 and NaBrO 3 Raman lasers

    No full text
    corecore