264 research outputs found

    On red shifs in the transition region and corona

    Full text link
    We present evidence that transition region red-shifts are naturally produced in episodically heated models where the average volumetric heating scale height lies between that of the chromospheric pressure scale height of 200 km and the coronal scale height of 50 Mm. In order to do so we present results from 3d MHD models spanning the upper convection zone up to the corona, 15 Mm above the photosphere. Transition region and coronal heating in these models is due both the stressing of the magnetic field by photospheric and convection `zone dynamics, but also in some models by the injection of emerging magnetic flux.Comment: 8 pages, 9 figures, NSO Workshop #25 Chromospheric Structure and Dynamic

    Impact of statin use and lipid profile on symptomatic intracerebral haemorrhage, outcome and mortality after intravenous thrombolysis in acute stroke

    Get PDF
    Background: It is unclear if a certain lipid profile and/or statin use contribute to symptomatic intracerebral haemorrhage (sICH), poor outcome or mortality after intravenous thrombolysis for ischaemic stroke. The aim of the current study was to assess the impact of statin use and lipid profile on sICH, outcome and mortality following thrombolysis in acute stroke. Methods: From 2001 to 2010, all patients admitted to our hospital and undergoing intravenous thrombolysis for acute ischaemic stroke were included into an open, prospective database. Initial stroke severity was assessed using the National Institute of Health Stroke Scale. Demographics, vascular risk factors, admission blood pressure, glucose levels, previous medication including statin use, lipid profiles including low-density lipoprotein (LDL), high-density lipoprotein (HDL) and triglyceride levels were recorded. Outcome measures included sICH according to the European Cooperative Acute Stroke Study II criteria, modified Rankin scale and mortality at 3 months. Results: 1,066 patients were included in the analysis; 5.3% (57 patients) had sICH. Mortality at 3 months was 17.6% (188 patients). A favourable outcome (modified Rankin scale 0-1) at 3 months was attained by 35.6% (379 patients). Prior statin use was not associated with increased odds for sICH (OR 1.05, 95% CI 0.55–2.04, p = 0.864), mortality (OR 1.32, 95% CI 0.90–1.93, p = 0.152) or favourable outcome (OR 0.89, 95% CI 0.65–1.24, p = 0.507). Similar results were found for the different lipid variables: high LDL (OR 0.96, 95% CI 0.36–2.60, p = 0.942), high triglyceride (OR 1.74, 95% CI 0.84–3.56, p = 0.132) and low HDL (OR 1.78, 95% CI 0.68–4.65, p = 0.279) were not associated with increased odds for sICH. Likewise, neither mortality nor functional outcome at 3 months was significantly associated with any of the lipid variables in the univariable analysis following Bonferroni adjustment for multiple comparisons. The same results were found in the multivariable analysis adjusting for imbalances in baseline characteristics. Conclusions: In contrast to previous studies, we found that in stroke patients receiving thrombolysis therapy, neither the lipid profile nor prior statin use were associated with increased odds for sICH, functional outcome or mortality at 3 months

    Blood pressure variability after intravenous thrombolysis in acute stroke does not predict intracerebral hemorrhage but poor outcome

    Get PDF
    Background: The relevance of blood pressure variability (BPV) in the development of intracerebral hemorrhage (ICH) after intravenous thrombolysis (IVT) in acute stroke still remains uncertain. Methods: 427 consecutive patients treated with IVT in the years 2007-2009 were studied. Blood pressure (BP) values were analyzed from admission to follow-up imaging scan and described as mean, maximum, minimum, standard deviation (SD), difference between maximum and minimum, successive variation (SV) and maximum SV. ICH was categorized based on radiologic criteria and symptomatic ICH (sICH) was defined as ICH plus worsening of the National Institute of Health Stroke Scale by 6 4 points or leading to death. Three-month outcome was described by means of the modified Rankin Scale. Results: We observed any ICH in 51 (11.9%) and sICH in 10 (2.3%) patients. Systolic and diastolic BP profiles, including mean, maximum, minimum, SD, difference between maximum and minimum, SV and maximum SV, did not differ between ICH-negative, ICH-positive and sICH patients

    Constant cross section of loops in the solar corona

    Full text link
    The corona of the Sun is dominated by emission from loop-like structures. When observed in X-ray or extreme ultraviolet emission, these million K hot coronal loops show a more or less constant cross section. In this study we show how the interplay of heating, radiative cooling, and heat conduction in an expanding magnetic structure can explain the observed constant cross section. We employ a three-dimensional magnetohydrodynamics (3D MHD) model of the corona. The heating of the coronal plasma is the result of braiding of the magnetic field lines through footpoint motions and subsequent dissipation of the induced currents. From the model we synthesize the coronal emission, which is directly comparable to observations from, e.g., the Atmospheric Imaging Assembly on the Solar Dynamics Observatory (AIA/SDO). We find that the synthesized observation of a coronal loop seen in the 3D data cube does match actually observed loops in count rate and that the cross section is roughly constant, as observed. The magnetic field in the loop is expanding and the plasma density is concentrated in this expanding loop; however, the temperature is not constant perpendicular to the plasma loop. The higher temperature in the upper outer parts of the loop is so high that this part of the loop is outside the contribution function of the respective emission line(s). In effect, the upper part of the plasma loop is not bright and thus the loop actually seen in coronal emission appears to have a constant width. From this we can conclude that the underlying field-line-braiding heating mechanism provides the proper spatial and temporal distribution of the energy input into the corona --- at least on the observable scales.Comment: 8 pages, 9 figures, accepted for publication in A&

    Information-theoretic analysis of a family of improper discrete constellations

    Get PDF
    Non-circular or improper Gaussian signaling has proven beneficial in several interference-limited wireless networks. However, all implementable coding schemes are based on finite discrete constellations rather than Gaussian signals. In this paper, we propose a new family of improper constellations generated by widely linear processing of a square M-QAM (quadrature amplitude modulation) signal. This family of discrete constellations is parameterized by κ, the circularity coefficient and a phase ϕ. For uncoded communication systems, this phase should be optimized as ϕ∗(κ) to maximize the minimum Euclidean distance between points of the improper constellation, therefore minimizing the bit error rate (BER). For the more relevant case of coded communications, where the coded symbols are constrained to be in this family of improper constellations using ϕ∗(κ), it is shown theoretically and further corroborated by simulations that, except for a shaping loss of 1.53 dB encountered at a high signal-to-noise ratio (snr), there is no rate loss with respect to the improper Gaussian capacity. In this sense, the proposed family of constellations can be viewed as the improper counterpart of the standard proper M-QAM constellations widely used in coded communication systems.The work of Pedro M. Crespo and Ignacio Santamaria has been partially supported by the Ministerio de Economía y Competitividad (MINECO) of Spain and Agencia Estatal de Investigación (AEI)/(European Fund for Economic and Regional Development) FEDER funds of the E.U., under Grants TEC2013-47141-C4-R (RACHEL), TEC2016-75067-C4-4-R (CARMEN). The work of Christian Lameiro and Peter J. Schreier was supported by the German Research Foundation (DFG) under Grants LA 4107/1-1 and SCHR 1384/6-1

    On The Doppler Velocity of Emission Line Profiles Formed in the "Coronal Contraflow" that is the Chromosphere-Corona Mass Cycle

    Full text link
    This analysis begins to explore the complex chromosphere-corona mass cycle using a blend of imaging and spectroscopic diagnostics. Single Gaussian fits to hot emission line profiles (formed above 1MK) at the base of coronal loop structures indicate material blue-shifts of 5-10km/s while cool emission line profiles (formed below 1MK) yield red-shifts of a similar magnitude - indicating, to zeroth order, that a temperature-dependent bifurcating flow exists on coronal structures. Image sequences of the same region reveal weakly emitting upward propagating disturbances in both hot and cool emission with apparent speeds of 50-150km/s. Spectroscopic observations indicate that these propagating disturbances produce a weak emission component in the blue wing at commensurate speed, but that they contribute only a few percent to the (ensemble) emission line profile in a single spatio-temporal resolution element. Subsequent analysis of imaging data shows material "draining" slowly (~10km/s) out of the corona, but only in the cooler passbands. We interpret the draining as the return-flow of coronal material at the end of the complex chromosphere-corona mass cycle. Further, we suggest that the efficient radiative cooling of the draining material produces a significant contribution to the red wing of cool emission lines that is ultimately responsible for their systematic red-shift as derived from a single Gaussian fit when compared to those formed in hotter (conductively dominated) domains. The presence of counter-streaming flows complicates the line profiles, their interpretation, and asymmetry diagnoses, but allows a different physical picture of the lower corona to develop.Comment: 7 pages, 5 color figures. Accepted to Appear Ap

    Ubiquitous High Speed Transition Region and Coronal Upflows in the Quiet Sun

    Full text link
    We study the line profiles of a range of transition region (TR) emission lines observed in typical quiet Sun regions. In magnetic network regions, the Si IV 1402\AA{}, C IV 1548\AA{}, N V 1238\AA{}, O VI 1031\AA{}, and Ne VIII 770\AA{} spectral lines show significant asymmetry in the blue wing of the emission line profiles. We interpret these high-velocity upflows in the lower and upper TR as the quiet Sun equivalent of the recently discovered upflows in the low corona above plage regions (Hara et al., 2008). The latter have been shown to be directly associated with high-velocity chromospheric spicules that are (partially) heated to coronal temperatures and play a significant role in supplying the active region corona with hot plasma (DePontieu et al., 2009}. We show that a similar process likely dominates the quiet Sun network. We provide a new interpretation of the observed quiet Sun TR emission in terms of the relentless mass transport between the chromosphere and corona - a mixture of emission from dynamic episodic heating and mass injection into the corona as well as that from the previously filled, slowly cooling, coronal plasma. Analysis of the observed upflow component shows that it carries enough hot plasma to play a significant role in the energy and mass balance of the quiet corona. We determine the temperature dependence of the upflow velocities to constrain the acceleration and heating mechanism that drives these upflows. We also show that the temporal characteristics of these upflows suggest an episodic driver that sometimes leads to quasi-periodic signals. We suggest that at least some of the quasi-periodicities observed with coronal imagers and spectrographs that have previously been interpreted as propagating magnetoacoustic waves, may instead be caused by these upflows.Comment: 10 pages, 15 figures. In press ApJ. Higher resolution figures, and movies supporting them, can be found at http://download.hao.ucar.edu/pub/mscott/papers/QS

    Baroreflex Impairment After Subarachnoid Hemorrhage Is Associated With Unfavorable Outcome.

    No full text
    BACKGROUND AND PURPOSE: Aneurysmal subarachnoid hemorrhage (SAH) is characterized by important changes in the autonomic nervous system with potentially adverse consequences. The baroreflex has a key role in regulating the autonomic nervous system. Its role in SAH outcome is not known. The purpose of this study was to evaluate the association between the baroreflex and the functional 3-month outcome in SAH. METHODS: The study used a prospective database of 101 patients hospitalized for SAH. We excluded patients receiving β-blockers or noradrenaline. Baroreflex sensitivity (BRS) was measured using the cross-correlation method. A good outcome was defined by a Glasgow Outcome Scale score at 4 or 5 at 3 months. RESULTS: Forty-eight patients were included. Median age was 58 years old (36-76 years); women/men: 34/14. The World Federation of Neurosurgery clinical severity score on admission was 1 or 2 for 73% of patients. In the univariate analysis, BRS (P=0.007), sedation (P=0.001), World Federation of Neurosurgery score (P=0.001), Glasgow score (P=0.002), Fisher score (P=0.022), and heart rate (P=0.037) were associated with outcome. The area under the receiver operating characteristic curve for the model with BRS as a single predictor was estimated at 0.835. For each unit increase in BRS, the odds for a good outcome were predicted to increase by 31%. Area under the receiver operating characteristic curve for heart rate alone was 0.670. In the multivariate analysis, BRS (odds ratio, 1.312; 95% confidence interval, 1.048-1.818; P=0.018) and World Federation of Neurosurgery (odds ratio, 0.382; 95% confidence interval, 0.171-0.706; P=0.001) were significantly associated with outcome. Area under the receiver operating characteristic curve was estimated at 0.900. CONCLUSIONS: In SAH, early BRS was associated with 3-month outcome. This conclusion requires confirmation on a larger number of patients in a multicentre study

    Cardiac connexin-43 hemichannels and pannexin1 channels: Provocative antiarrhythmic targets

    Get PDF
    Cardiac connexin-43 (Cx43) creates gap junction channels (GJCs) at intercellular contacts and hemi-channels (HCs) at the peri-junctional plasma membrane and sarcolemmal caveolae/rafts compartments. GJCs are fundamental for the direct cardiac cell-to-cell transmission of electrical and molecular signals which ensures synchronous myocardial contraction. The HCs and structurally similar pannexin1 (Panx1) channels are active in stressful conditions. These channels are essential for paracrine and autocrine communication through the release of ions and signaling molecules to the extracellular environment, or for uptake from it. The HCs and Panx1 channel-opening profoundly affects intracellular ionic homeostasis and redox status and facilitates via purinergic signaling pro-inflammatory and pro-fibrotic processes. These conditions promote cardiac arrhythmogenesis due to the impairment of the GJCs and selective ion channel function. Crosstalk between GJCs and HCs/Panx1 channels could be crucial in the development of arrhythmogenic substrates, including fibrosis. Despite the knowledge gap in the regulation of these channels, current evidence indicates that HCs and Panx1 channel activation can enhance the risk of cardiac arrhythmias. It is extremely challenging to target HCs and Panx1 channels by inhibitory agents to hamper development of cardiac rhythm disorders. Progress in this field may contribute to novel therapeutic approaches for patients prone to develop atrial or ventricular fibrillation.Fil: Andelova, Katarina. Slovak Academy of Sciences. Institute for Heart Research; EslovaquiaFil: Benova, Tamara Egan. Slovak Academy of Sciences. Institute for Heart Research; EslovaquiaFil: Bacova, Barbara Szeiffova. Slovak Academy of Sciences. Institute for Heart Research; EslovaquiaFil: Sykora, Matus. Slovak Academy of Sciences. Institute for Heart Research; EslovaquiaFil: Prado, Natalia Jorgelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Diez, Emiliano Raúl. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Hlivak, Peter. National Institute Of Cardiovascular Diseases; EslovaquiaFil: Tribulova, Narcis. Slovak Academy of Sciences. Institute for Heart Research; Eslovaqui
    • …
    corecore