2,152 research outputs found

    The interaction of multiple bodies and water waves : with the application to the motion of ice floes : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Mathematics at Massey University, Albany, New Zealand

    Get PDF
    To understand the propagation of water waves through arrays of floating or (fully or partially) submerged bodies it is necessary to know how these bodies interact with each other under the influence of ambient waves. However, the conventional full diffraction calculation of the scattered wavefields of many interacting bodies requires a considerable computational effort. In this thesis, a method is developed which makes it possible to quickly calculate the wave scattering of many interacting floating or (fully or partially) submerged, vertically non-overlapping bodies of arbitrary geometry in water of infinite depth. It extends Kagemoto and Yue's analysis for axisymmetric bodies in finite depth. The idea of this method is to expand the water velocity potential into its cylindrical eigenfunctions such that, the scattered potentials of the bodies are defined by a set of coefficients only. Representing the scattered wavefield of each body as an incident wave upon all other bodies, a linear system of equations for the coefficients of the scattered wavefields is derived. Diffraction transfer matrices which relate the coefficients of the incoming wavefield upon a single body to those of its scattered wavefield play an important role in the process. The calculation of the diffraction transfer matrices for bodies of arbitrary shape requires the representation of the infinite depth free surface Green's function in the eigenfunctions of an outgoing wave. This eigenfunction expansion will be derived from the equivalent finite depth Green's function. An important application of this interaction method is the propagation of ocean waves through fields of ice floes which can be modelled as floating flexible thin plates. Meylan's method of solution is used to calculate the motion of a single ice floe from which the solutions for multiple interacting ice floes are computed. While the interaction theory will be derived for general floating or submerged bodies, particular examples are always given for the case of ice floes. Results are presented for ice floes of different geometries and in different arrangements and convergence tests comparing the finite and the infinite depth method are conducted with two square interacting ice floes where full diffraction calculations serve as references

    Inside/Outside : Post-Synthetic Modification of the Zr-Benzophenonedicarboxylate Metal–Organic Framework

    Get PDF
    The Zr-based metal–organic framework, Zr-bzpdc-MOF, contains the photoreactive linker molecule benzophenone-4,4'-dicarboxylate (bzpdc) which imparts the possibility for photochemical post-synthetic modification. Upon irradiation with UV light, the keto group of the benzophenone moiety will react with nearly every C-H bond-containing molecule. Within this paper, we further explore the photochemical reactivity of the Zr-bzpdc-MOF, especially with regard to which restrictions govern internal versus external reactions. We show that apart from reactions with C-H bond-containing molecules, the MOF reacts also with water. By studying the reactivity versus linear alcohols we find a clear delineation in that shorter alcohol molecules (up to butanol as a borderline case) react with photoexcited keto groups throughout the whole crystals whereas longer ones react only with surface-standing keto groups. In addition, we show that with the alkanes n-butane to n-octane, the reaction is restricted to the outer surface. We hypothesize that the reactivity of the Zr-bzpdc-MOF versus different reagents depends on the accessibility of the pore system which in turn depends mainly on the size of the reagents and on their polarity. The possibility to direct the post-synthetic modification of the Zr-bzpdc-MOF (selective modification of the whole pore system versus surface modification) gives additional degrees of freedom in the design of this metal–organic framework for shaping and for applications. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA

    Impact of the contacting scheme on I-V measurements of metallization-free silicon heterojunction solar cells

    Get PDF
    I-V measurements are sensitive to the number and positioning of current and voltage sensing contacts. For busbarless solar cells, measurement setups have been developed using current collection wires and separate voltage sense contacts. Placing the latter at a defined position enables a grid resistance neglecting measurement and thus I-V characteristics independent from the contacting system. This technique has been developed for solar cells having a finger grid and good conductivity in the direction of the fingers. The optimal position of the sense contact in case of finger-free silicon heterojunction solar cells has not yet been studied. Here, the lateral charge carrier transport occurs in a transparent conductive oxide layer resulting in a higher lateral resistance. We perform finite difference method simulations of HJT solar cells without front metallization to investigate the impact of high lateral resistances on the I-V measurement of solar cells. We show the high sensitivity on the number of used wires for contacting as well as the position of the sense contact for the voltage measurement. Using the simulations, we are able to explain the high difference of up to 7.5% in fill factor measurements of metal free solar cells with varying TCO sheet resistances between two measurement systems using different contacting setups. We propose a method to compensate for the contacting system to achieve a grid-resistance neglecting measurement with both systems allowing a reduction of the FF difference to below 1.5%

    Improved detection of blood stream pathogens by real-time PCR in severe sepsis

    Get PDF
    Objective: Evaluation of the technical and diagnostic feasibility of commercial multiplex real-time polymerase chain reaction (PCR) for detection of blood stream infections in a cohort of intensive care unit (ICU) patients with severe sepsis, performed in addition to conventional blood cultures. Design: Dual-center cohort study. Setting: Surgical ICU of two university hospitals. Patients and participants: One hundred eight critically ill patients fulfilling the American College of Chest Physicians/Society of Critical Care Medicine (ACCP/SCCM) severe sepsis criteria were included. Interventions: None. Measurements and results: PCR results obtained in 453 blood samples from 108 patients were compared with corresponding blood culture results. PCR resulted in a twofold higher positivity rate when compared with conventional blood culture (BC) testing (114 versus 58 positive samples). In 40 out of 58 PCR positive assays the results of the corresponding blood cultures were identical to microorganisms detected by PCR. In 18 samples PCR and BC yielded discrepant results. Compared with conventional blood culture the sensitivity and specificity of PCR was 0.69 and 0.81, respectively. Further evaluation of PCR results against a constructed gold standard including conventional microbiological test results from other significant patient specimen (such as bronchio-alveolar lavage fluid, urine, swabs) and additionally generated clinical and laboratory information yielded sensitivity of 0.83 and specificity of 0.93. Conclusions: Our cohort study demonstrates improved pathogen detection using PCR findings in addition to conventional blood culture testing. PCR testing provides increased sensitivity of blood stream infection. Studies addressing utility including therapeutic decision-making, outcome, and cost-benefit following diagnostic application of PCR tests are needed to further assess its value in the clinical settin

    Analysis of continuous neuronal activity evoked by natural speech with computational corpus linguistics methods

    Get PDF
    In the field of neurobiology of language, neuroimaging studies are generally based on stimulation paradigms consisting of at least two different conditions. Designing those paradigms can be very time-consuming and this traditional approach is necessarily data-limited. In contrast, in computational and corpus linguistics, analyses are often based on large text corpora, which allow a vast variety of hypotheses to be tested by repeatedly re-evaluating the data set. Furthermore, text corpora also allow exploratory data analysis in order to generate new hypotheses. By drawing on the advantages of both fields, neuroimaging and computational corpus linguistics, we here present a unified approach combining continuous natural speech and MEG to generate a corpus of speech-evoked neuronal activity

    The Dark Matter Halos of Moderate Luminosity X-ray AGN as Determined fromWeak Gravitational Lensing and Host Stellar Masses

    Get PDF
    Understanding the relationship between galaxies hosting active galactic nuclei (AGN) and the dark matter haloes in which they reside is key to constraining how black hole fuelling is triggered and regulated. Previous efforts have relied on simple halo mass estimates inferred from clustering, weak gravitational lensing, or halo occupation distribution modelling. In practice, these approaches remain uncertain because AGN, no matter how they are identified, potentially live a wide range of halo masses with an occupation function whose general shape and normalization are poorly known. In this work, we show that better constraints can be achieved through a rigorous comparison of the clustering, lensing, and cross-correlation signals of AGN hosts to the fiducial stellar-to-halo mass relation (SHMR) derived for all galaxies, irrespective of nuclear activity. Our technique exploits the fact that the global SHMR can be measured with much higher accuracy than any statistic derived from AGN samples alone. Using 382 moderate luminosity X-ray AGN at z < 1 from the COSMOS field, we report the first measurements of weak gravitational lensing from an X-ray-selected sample. Comparing this signal to predictions from the global SHMR, we find that, contrary to previous results, most X-ray AGN do not live in medium size groups – nearly half reside in relatively low mass haloes with M_(200b) ∌ 10^(12.5) M_⊙. The AGN occupation function is well described by the same form derived for all galaxies but with a lower normalization – the fraction of haloes with AGN in our sample is a few per cent. The number of AGN satellite galaxies scales as a power law with host halo mass with a power-law index α = 1. By highlighting the relatively ‘normal’ way in which moderate luminosity X-ray AGN hosts occupy haloes, our results suggest that the environmental signature of distinct fuelling modes for luminous quasars compared to moderate luminosity X-ray AGN is less obvious than previously claimed

    Impact of Carbon Support Meso‐Porosity on Mass Transport and Performance of PEMFC Cathode Catalyst Layers

    Get PDF
    The analysis of the impact of the cathode catalyst layer pore structure on the membrane electrode assembly (MEA) cell performance of a PEMFC is presented. In this study, a pristine CMK‐3 catalyst carbon support material with well‐defined pore structure in the 3–6 nm range together with two nitrogen‐doped variants is analyzed against a commercial carbon black to achieve a better understanding of catalyst layer porosity‐performance relations. We used chemically N‐doped CMK‐3 catalyst to learn more about the effect of N‐doped porous catalyst supports on the concomitant transport properties and PEMFC cell performance. Chemical treatment using cyanamide was conducted to introduce a variety of N‐functionalities. A detailed in‐situ electrochemical investigation was combined with N2‐physisorption analysis. Based on their structural properties, the mesopore fractions and pore openings display a major role for reducing oxygen transport resistance and enhance Pt accessibility. We find that hierarchically ordered mesoporosity is superior to disordered porosity with prevalent micropore character: Analysis including adsorption electrochemical active surface area (ECSA), Pt‐accessibility, ionomer coverage, pore geometry, proton resistivity and transport loss we conclude the importance of a well‐defined mesoporous structure for its cell performance

    The Effect of Obstructive Sleep Apnea and Continuous Positive Airway Pressure Therapy on Skeletal Muscle Lipid Content in Obese and Nonobese Men.

    Get PDF
    Obstructive sleep apnea (OSA), independently of obesity (OBS), predisposes to insulin resistance (IR) for largely unknown reasons. Because OSA-related intermittent hypoxia triggers lipolysis, overnight increases in circulating free fatty acids (FFAs) including palmitic acid (PA) may lead to ectopic intramuscular lipid accumulation potentially contributing to IR. Using 3-T-1H-magnetic resonance spectroscopy, we therefore compared intramyocellular and extramyocellular lipid (IMCL and EMCL) in the vastus lateralis muscle at approximately 7 am between 26 male patients with moderate-to-severe OSA (17 obese, 9 nonobese) and 23 healthy male controls (12 obese, 11 nonobese). Fiber type composition was evaluated by muscle biopsies. Moreover, we measured fasted FFAs including PA, glycated hemoglobin A1c, thigh subcutaneous fat volume (ScFAT, 1.5-T magnetic resonance tomography), and maximal oxygen uptake (VO2max). Fourteen patients were reassessed after continuous positive airway pressure (CPAP) therapy. Total FFAs and PA were significantly (by 178% and 166%) higher in OSA patients vs controls and correlated with the apnea-hypopnea index (AHI) (r ≄ 0.45, P < .01). Moreover, IMCL and EMCL were 55% (P < .05) and 40% (P < .05) higher in OSA patients, that is, 114% and 103% in nonobese, 24.4% and 8.4% in obese participants (with higher control levels). Overall, PA, FFAs (minus PA), and ScFAT significantly contributed to IMCL (multiple r = 0.568, P = .002). CPAP significantly decreased EMCL (-26%) and, by trend only, IMCL, total FFAs, and PA. Muscle fiber composition was unaffected by OSA or CPAP. Increases in IMCL and EMCL are detectable at approximately 7 am in OSA patients and are partly attributable to overnight FFA excesses and high ScFAT or body mass index. CPAP decreases FFAs and IMCL by trend but significantly reduces EMCL

    Fiber-assisted single-photon spectrograph

    Full text link
    We demonstrate the implementation of a fiber-integrated spectrograph utilizing chromatic group velocity dispersion (GVD) in a single mode fiber. By means of GVD we stretch an ultrafast pulse in time in order to spectrally resolve single photons in the time domain, detected by single photon counting modules with very accurate temporal resolution. As a result, the spectrum of a very weak pulse is recovered from a precise time measurement with high signal to noise ratio. We demonstrate the potential of our technique by applying our scheme to analyzing the joint spectral intensity distribution of a parametric downconversion source at telecommunication wavelength.Comment: 4 pages, 3 figure

    Reduced splenic uptake on 68Ga-Pentixafor-PET/CT imaging in multiple myeloma - a potential imaging biomarker for disease prognosis

    Get PDF
    Beyond being a key factor for tumor growth and metastasis in human cancer, C-X-C motif chemokine receptor 4 (CXCR4) is also highly expressed by a number of immune cells, allowing for non-invasive read-out of inflammatory activity. With two recent studies reporting on prognostic implications of the spleen signal in diffusion-weighted magnetic resonance imaging in patients with plasma cell dyscrasias, the aim of this study was to correlate splenic (68)Ga-Pentixafor uptake in multiple myeloma (MM) with clinical parameters and to evaluate its prognostic impact. METHODS: Eighty-seven MM patients underwent molecular imaging with (68)Ga-Pentixafor-PET/CT. Splenic CXCR4 expression was semi-quantitatively assessed by peak standardized uptake values (SUV(peak)) and corresponding spleen-to-bloodpool ratios (TBR) and correlated with clinical and prognostic features as well as survival parameters. RESULTS: (68)Ga-Pentixafor-PET/CT was visually positive in all MM patients with markedly heterogeneous tracer uptake in the spleen. CXCR4 expression determined by (68)Ga-Pentixafor-PET/CT corresponded with advanced disease and was inversely associated with the number of previous treatment lines as compared to controls or untreated smouldering multiple myeloma patients (SUV(peak)Spleen 4.06 ± 1.43 vs. 6.02 ± 1.16 vs. 7.33 ± 1.40; (P5.79 ((P<) 0.001). Multivariate Cox analysis confirmed SUV(peak)Spleen as an independent predictor of survival (HR 0.75;P= 0.009). CONCLUSION: These data suggest that splenic (68)Ga-Pentixafor uptake might provide prognostic information in pre-treated MM patients similar to what was reported for diffusion-weighted magnetic resonance imaging. Further research to elucidate the underlying biologic implications is warranted
    • 

    corecore