66 research outputs found

    Genomic Correlates of Virulence Attenuation in the Deadly Amphibian Chytrid Fungus, Batrachochytrium dendrobatidis.

    Get PDF
    Emerging infectious diseasespose a significant threat to global health, but predicting disease outcomes for particular species can be complicated when pathogen virulence varies across space, time, or hosts. The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) has caused worldwide declines in frog populations. Not only do Bd isolates from wild populations vary in virulence, but virulence shifts can occur over short timescales when Bd is maintained in the laboratory. We leveraged changes in Bd virulence over multiple generations of passage to better understand mechanisms of pathogen virulence. We conducted whole-genome resequencing of two samples of the same Bd isolate, differing only in passage history, to identify genomic processes associated with virulence attenuation. The isolate with shorter passage history (and greater virulence) had greater chromosome copy numbers than the isolate maintained in culture for longer, suggesting that virulence attenuation may be associated with loss of chromosome copies. Our results suggest that genomic processes proposed as mechanisms for rapid evolution in Bd are correlated with virulence attenuation in laboratory culture within a single lineage of Bd. Moreover, these genomic processes can occur over extremely short timescales. On a practical level, our results underscore the importance of immediately cryo-archiving new Bd isolates and using fresh isolates, rather than samples cultured in the laboratory for long periods, for laboratory infection experiments. Finally, when attempting to predict disease outcomes for this ecologically important pathogen, it is critical to consider existing variation in virulence among isolates and the potential for shifts in virulence over short timescales

    Bridging the Gap between Earth Science and Students: An Integrated Approach using NASA Earth Science Climate Data

    Get PDF
    Under the auspices of the Department of Education's No Child Left Behind (NCLB) Act, beginning in 2007 students will be tested in the science area. There are many techniques that educators can employ to teach students science. The use of authentic materials or in this case authentic data can be an engaging alternative to more traditional methods. An Earth science classroom is a great place for the integration of authentic data and science concepts. The National Aeronautics and Space Administration (NASA) has a wealth of high quality Earth science data available to the general public. For instance, the Atmospheric Science Data Center (ASDC) at NASA s Langley Research Center houses over 800 Earth science data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry. These data sets were produced to increase academic understanding of the natural and anthropogenic factors that influence global climate; however, a major hurdle in using authentic data is the size of the data and data documentation. To facilitate the use of these data sets for educational purposes, the Mentoring and inquirY using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA) project has been established to systematically support educational activities at all levels of formal and informal education. The MY NASA DATA project accomplishes this by reducing these large data holdings to microsets that are easily accessible and explored by K-12 educators and students though the project's Web page. MY NASA DATA seeks to ease the difficulty in understanding the jargon-heavy language of Earth science. This manuscript will show how MY NASA DATA provides resources for NCLB implementation in the science area through an overview of the Web site, the different microsets available, the lesson plans and computer tools, and an overview of educational support mechanisms

    Identification of cancer risk and associated behaviour: implications for social marketing campaigns for cancer prevention

    Get PDF
    Background Community misconception of what causes cancer is an important consideration when devising communication strategies around cancer prevention, while those initiating social marketing campaigns must decide whether to target the general population or to tailor messages for different audiences. This paper investigates the relationships between demographic characteristics, identification of selected cancer risk factors, and associated protective behaviours, to inform audience segmentation for cancer prevention social marketing. Methods Data for this cross-sectional study (n = 3301) are derived from Cancer Council New South Wales’ 2013 Cancer Prevention Survey. Descriptive statistics and logistic regression models were used to investigate the relationship between respondent demographic characteristics and identification of each of seven cancer risk factors; demographic characteristics and practice of the seven ‘protective’ behaviours associated with the seven cancer risk factors; and identification of cancer risk factors and practising the associated protective behaviours, controlling for demographic characteristics. Results More than 90% of respondents across demographic groups identified sun exposure and smoking cigarettes as moderate or large cancer risk factors. Around 80% identified passive smoking as a moderate/large risk factor, and 40–60% identified being overweight or obese, drinking alcohol, not eating enough vegetables and not eating enough fruit. Women and older respondents were more likely to identify most cancer risk factors as moderate/large, and to practise associated protective behaviours. Education was correlated with identification of smoking as a moderate/large cancer risk factor, and with four of the seven protective behaviours. Location (metropolitan/regional) and country of birth (Australia/other) were weak predictors of identification and of protective behaviours. Identification of a cancer risk factor as moderate/large was a significant predictor for five out of seven associated cancer-protective behaviours, controlling for demographic characteristics. Conclusions These findings suggest a role for both audience segmentation and whole-of-population approaches in cancer-prevention social marketing campaigns. Targeted campaigns can address beliefs of younger people and men about cancer risk factors. Traditional population campaigns can enhance awareness of being overweight, alcohol consumption, and poor vegetable and fruit intake as cancer risk factors

    Extended data for ‘Improving hospital-based opioid substitution therapy (iHOST): protocol for a mixed-methods evaluation'

    Get PDF
    Supplementary material for iHOST protocol publication, comprising: 1) Definitions of variables for difference-in-difference study, and, 2) Limitations for difference-in-difference study

    Kelt-4Ab: An inflated hot jupiter transiting the bright (V ∼ 10) component of a hierarchical triple

    Get PDF
    We report the discovery of KELT-4Ab, an inflated, transiting Hot Jupiter orbiting the brightest component of ahierarchical triple stellar system. The host star is an F star with Teff =6206 ± 75 K, log g =4.108 ± 0.014, [Fe/H]= -0.116+0.069+0.065, M∗ = 1.201-0.061+0.067 M⊙, and R∗ = 1.603-0.038+0.039 R⊙. The best-fit linear ephemeris is BJDTDB =2456193.29157±0.00021 + E(2.9895936±0.0000048). With a magnitude of V∼10, a planetary radius of 1.699-0.045+0.046 RJ, and a mass of 0.902-0.059+0.060 MJ, it is the brightest host among the population of inflated Hot Jupiters (RP \u3e 1.5RJ), making it a valuable discovery for probing the nature of inflated planets. In addition, its existence within a hierarchical triple and its proximity to Earth (210 pc) provide a unique opportunity for dynamical studies with continued monitoring with high resolution imaging and precision radial velocities. The projected separation between KELT-4A and KELT-4BC is 328±16 AU and the projected separation between KELT-4B and KELT-4C is 10.30±0.74 AU. Assuming face-on, circular orbits, their respective periods would be 3780±290 and 29.4±3.6 years and the astrometric motions relative to the epoch in this work of both the binary stars around each other and of the binary around the primary star would be detectable now and may provide meaningful constraints on the dynamics of the system

    KELT-12b: A P ∼ 5 day, Highly Inflated Hot Jupiter Transiting a Mildly Evolved Hot Star

    Get PDF
    We announce the discovery of KELT-12b, a highly inflated Jupiter-mass planet transiting the mildly evolved, V = 10.64 host star TYC 2619-1057-1. We followed up the initial transit signal in the KELT-North survey data with precise ground-based photometry, high-resolution spectroscopy, precise radial velocity measurements, and high-resolution adaptive optics imaging. Our preferred best-fit model indicates that the host star has = 6279 ±51 K, = 3.89 ±0.05, [Fe/H] = 0.19+0.08-0.09, = M∗ = 1.59+0.070.09M, and R ∗= 2.37 ±0.17 . The planetary companion has Mp= 0.95 ±0.14 MJ, RP = 1.78+0.17-0.16 RJ, log gP = 2.87+0.9-0.09 and density pp 0.210.070.05= g cm-3, making it one of the most inflated giant planets known. Furthermore, for future follow-up, we report a high-precision time of inferior conjunction in BJDTDB of 2,457,083.660459 ±0.000894 and period of P = 5.0316216 ± 0.000032days. Despite the relatively large separation of ∼0.07 au implied by its ∼5.03-day orbital period, KELT-12b receives significant flux of 2.38+0.32-0.29 × 109 erg s-1 cm-2 from its host. We compare the radii and insolations of transiting gas giant planets around hot (Teff 6250 K) and cool stars, noting that the observed paucity of known transiting giants around hot stars with low insolation is likely due to selection effects. We underscore the significance of long-term ground-based monitoring of hot stars and space-based targeting of hot stars with the Transiting Exoplanet Survey Satellite to search for inflated gas giants in longer-period orbits
    • …
    corecore