89 research outputs found

    Развитие кредитного рынка Украины и Крыма

    Get PDF
    В данной статье проведен сравнительный анализ предоставления кредитных ресурсов украинскими банками и банками АРК за 2000-2006гг. Детально рассматриваются кредиты, предоставленные в экономику Украины и Крыма, по срокам и по целевому назначению.У даній статті проведений порівняльний аналіз надання кредитних ресурсів українськими банками і банками АРК за 2000-2006гг. Детально розглядаються кредити, надані в економіку України і Криму, по термінах і за цільовим призначенням.In given article the analysis of the credit market in Ukraine and in Crimea is shown. The main idea of the article this consideration of the credits on kinds and on a special-purpose designation

    Spatial, seasonal and interannual variability of supraglacial ponds in the Langtang Valley of Nepal, 1999–2013

    Get PDF
    Supraglacial ponds play a key role in absorbing atmospheric energy and directing it to the ice of debris-covered glaciers, but the spatial and temporal distribution of these features is not well documented. We analyse 172 Landsat TM/ETM+ scenes for the period 1999–2013 to identify thawed supraglacial ponds for the debris-covered tongues of five glaciers in the Langtang Valley of Nepal. We apply an advanced atmospheric correction routine (Landcor/6S) and use band ratio and image morphological techniques to identify ponds and validate our results with 2.5 m Cartosat-1 observations. We then characterize the spatial, seasonal and interannual patterns of ponds. We find high variability in pond incidence between glaciers (May–October means of 0.08–1.69% of debris area), with ponds most frequent in zones of low surface gradient and velocity. The ponds show pronounced seasonality, appearing in the pre-monsoon as snow melts, peaking at the monsoon onset at 2% of debris-covered area, then declining in the post-monsoon as ponds drain or freeze. Ponds are highly recurrent and persistent, with 40.5% of pond locations occurring for multiple years. Rather than a trend in pond cover over the study period, we find high interannual variability for each glacier after controlling for seasonality

    № 107. Додаткове свідчення Миколи Чехівського від 27 вересня 1929 р.

    Get PDF
    In the headwater catchments of the main Asian rivers, glaciohydrological models are a useful tool to anticipate impacts of climatic changes. However, the reliability of their projections strongly depends on the quality and quantity of data that are available for parameter estimation, model calibration and validation, as well as on the accuracy of climate change projections. In this study the physically oriented, glaciohydrological model TOPKAPI-ETH is used to simulate future changes in snow, glacier, and runoff from the Hunza River Basin in northern Pakistan. Three key sources of model uncertainty in future runoff projections are compared: model parameters, climate projections, and natural climate variability. A novel approach, applicable also to ungauged catchments, is used to determine which model parameters and model components significantly affect the overall model uncertainty. We show that the model is capable of reproducing streamflow and glacier mass balances, but that all analyzed sources of uncertainty significantly affect the reliability of future projections, and that their effect is variable in time and in space. The effect of parametric uncertainty often exceeds the impact of climate uncertainty and natural climate variability, especially in heavily glacierized subcatchments. The results of the uncertainty analysis allow detailed recommendations on network design and the timing and location of field measurements, which could efficiently help to reduce model uncertainty in the future

    Supraglacial debris thickness and supply rate in High-Mountain Asia

    Get PDF
    Supraglacial debris strongly modulates glacier melt rates and can be decisive for ice dynamics and mountain hydrology. It is ubiquitous in High-Mountain Asia, yet because its thickness and supply rate from local topography are poorly known, our ability to forecast regional glacier change and streamflow is limited. Here we combined remote sensing and numerical modelling to resolve supraglacial debris thickness by altitude for 4689 glaciers in High-Mountain Asia, and debris-supply rate to 4141 of those glaciers. Our results reveal extensively thin supraglacial debris and high spatial variability in both debris thickness and supply rate. Debris-supply rate increases with the temperature and slope of debris-supply slopes regionally, and debris thickness increases as ice flow decreases locally. Our centennial-scale estimates of debris-supply rate are typically an order of magnitude or more lower than millennial-scale estimates of headwall-erosion rate from Beryllium-10 cosmogenic nuclides, potentially reflecting episodic debris supply to the region’s glaciers

    Controls on the relative melt rates of debris-covered glacier surfaces

    Get PDF
    Supraglacial debris covers 7% of mountain glacier area globally and generally reduces glacier surface melt. Enhanced energy absorption at ice cliffs and supraglacial ponds scattered across the debris surface leads these features to contribute disproportionately to glacier-wide ablation. However, the degree to which cliffs and ponds actually increase melt rates remains unclear, as these features have only been studied in a detailed manner for selected locations, almost exclusively in High Mountain Asia. In this study we model the surface energy balance for debris-covered ice, ice cliffs, and supraglacial ponds with a set of automatic weather station records representing the global prevalence of debris-covered glacier ice. We generate 5000 random sets of values for physical parameters using probability distributions derived from literature, which we use to investigate relative melt rates and to isolate the melt responses of debris, cliffs and ponds to the site-specific meteorological forcing. Modelled sub-debris melt rates are primarily controlled by debris thickness and thermal conductivity. At a reference thickness of 0.1 m, sub-debris melt rates vary considerably, differing by up to a factor of four between sites, mainly attributable to air temperature differences. We find that melt rates for ice cliffs are consistently 2–3× the melt rate for clean glacier ice, but this melt enhancement decays with increasing clean ice melt rates. Energy absorption at supraglacial ponds is dominated by latent heat exchange and is therefore highly sensitive to wind speed and relative humidity, but is generally less than for clean ice. Our results provide reference melt enhancement factors for melt modelling of debris-covered glacier sites, globally, while highlighting the need for direct measurement of debris-covered glacier surface characteristics, physical parameters, and local meteorological conditions at a variety of sites around the world

    Handgrip strength predicts persistent walking recovery after hip fracture surgery

    Get PDF
    Background In older people, hip fractures often lead to disability and death. We evaluated handgrip strength, an objective measure of physical function for bedridden patients, as a predictor of walking recovery in the year after fracture surgery. Methods This multicenter prospective cohort study included 504 patients, aged 70 years or more, who were admitted to the hospital for hip fracture surgery and were formerly able to walk independently. A multidimensional geriatric evaluation that included a physical examination, Short Portable Mental Status Questionnaire, Geriatric Depression Scale, Charlson Index, Basic Activities of Daily Living, and grip strength was administered at the time of admission. Follow-ups were performed every 3 months for 1 year after surgery to assess functional status and survival. The walking recovery probability was evaluated using multivariable logistic regression models. Results The mean age of the participants was 85.3 ± 5.5 years, and 76.1% of the participants were women. The mean grip strength was greater in men (β: 6.6 ± 0.62, P <.001) and was directly related to the Short Portable Mental Status Questionnaire results (P <.001), Basic Activities of Daily Living results (P <.001), serum vitamin D levels (P =.03), and time before surgery (P <.001), whereas it was inversely related to age (P <.001), Geriatric Depression Scale score (P <.001), and Charlson Index (P <.001). After adjusting for confounders, the grip strength was directly associated with the probability of both incident and persistent walking recovery (odds ratio highest tertile vs lowest tertile, 2.84, confidence interval, 1.76-4.59 and 2.79, confidence interval, 1.35-5.79, respectively). Conclusions In older patients with hip fractures, early grip strength evaluation might provide important prognostic information regarding the patient's future functional trajectory. © 2013 Elsevier Inc. All rights reserved

    Mapping ice cliffs on debris-covered glaciers using multispectral satellite images

    Get PDF
    Ice cliffs play a key role in the mass balance of debris-covered glaciers, but assessing their importance is limited by a lack of datasets on their distribution and evolution at scales larger than an individual glacier. These datasets are often derived using operator-biased and time-consuming manual delineation approaches, despite the recent emergence of semi-automatic mapping methods. These methods have used elevation or multispectral data, but the varying slope and mixed spectral signal of these dynamic features makes the transferability of these approaches particularly challenging. We develop three semi-automated and objective new approaches, based on the Spectral Curvature and Linear Spectral Unmixing of multispectral images, to map these features at a glacier to regional scale. The transferability of each method is assessed by applying it to three sites in the Himalaya, where debris-covered glaciers are widespread, with varying lithologic, glaciological and climatic settings, and encompassing different periods of the melt season. We develop the new methods keeping in mind the wide range of remote sensing platforms currently in use, and focus in particular on two products: we apply the three approaches at each site to near-contemporaneous atmospherically-corrected Pléiades (2 m resolution) and Sentinel-2 (10 m resolution) images and assess the effects of spatial and spectral resolution on the results. We find that the Spectral Curvature method works best for the high spatial resolution, four band Pléaides images, while a modification of the Linear Spectral Unmixing using the scaling factor of the unmixing is best for the coarser spatial resolution, but additional spectral information of Sentinel-2 products. In both cases ice cliffs are mapped with a Dice coefficient higher than 0.48. Comparison of the Pléiades results with other existing methods shows that the Spectral Curvature approach performs better and is more robust than any other existing automated or semi-automated approaches. Both methods outline a high number of small, sometimes shallow-sloping and thinly debris-covered ice patches that differ from our traditional understanding of cliffs but may have non-negligible impact on the mass balance of debris-covered glaciers. Overall these results pave the way for large scale efforts of ice cliff mapping that can enable inclusion of these features in debris-covered glacier melt models, as well as allow the generation of multiple datasets to study processes of cliff formation, evolution and decline
    corecore