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Abstract
Supraglacial debris covers 7% of mountain glacier area globally and generally reduces glacier
surface melt. Enhanced energy absorption at ice cliffs and supraglacial ponds scattered across the
debris surface leads these features to contribute disproportionately to glacier-wide ablation.
However, the degree to which cliffs and ponds actually increase melt rates remains unclear, as these
features have only been studied in a detailed manner for selected locations, almost exclusively in
High Mountain Asia. In this study we model the surface energy balance for debris-covered ice, ice
cliffs, and supraglacial ponds with a set of automatic weather station records representing the
global prevalence of debris-covered glacier ice. We generate 5000 random sets of values for physical
parameters using probability distributions derived from literature, which we use to investigate
relative melt rates and to isolate the melt responses of debris, cliffs and ponds to the site-specific
meteorological forcing. Modelled sub-debris melt rates are primarily controlled by debris thickness
and thermal conductivity. At a reference thickness of 0.1 m, sub-debris melt rates vary considerably,
differing by up to a factor of four between sites, mainly attributable to air temperature differences.
We find that melt rates for ice cliffs are consistently 2–3× the melt rate for clean glacier ice, but this
melt enhancement decays with increasing clean ice melt rates. Energy absorption at supraglacial
ponds is dominated by latent heat exchange and is therefore highly sensitive to wind speed and
relative humidity, but is generally less than for clean ice. Our results provide reference melt
enhancement factors for melt modelling of debris-covered glacier sites, globally, while highlighting
the need for direct measurement of debris-covered glacier surface characteristics, physical
parameters, and local meteorological conditions at a variety of sites around the world.

1. Introduction

Rocky debris covers the surface of approximately 7%
of mountain glacier ice globally, but over 10% for
some regions and frequently over 20% for individual
glaciers, where it is concentrated in lower ablation
areas (Scherler et al 2018, Herreid and Pellicciotti
2020). Due to difficulties in mapping debris-covered
ice, as well as the melt-inhibiting effect of even mod-
erate surface debris (e.g. Östrem 1959, Nicholson and
Benn 2006), these glacier areas have been historically

ignored in regional and global projections of gla-
cier melt (e.g. Radíc et al 2014, Huss and Hock
2015, Marzeion et al 2020). New debris thickness
datasets offer promise for explicit representation of
these areas in glacier models (Kraaijenbrink et al
2017, Compagno et al 2021, Rounce et al 2021), but
the spatial variability of supraglacial debris thick-
ness (McCarthy et al 2017, Nicholson et al 2018)
and model parametric uncertainty pose consider-
able obstacles. Furthermore, bare ice exposures (i.e.
ice cliffs) and supraglacial ponds are often scattered
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across the surface of debris-covered glaciers (Steiner
et al 2019, Kneib et al 2021a); these features are dis-
proportionately responsible for these glaciers’ mass
loss (e.g. Immerzeel et al 2014, Pellicciotti et al 2015,
Thompson et al 2016, Salerno et al 2017, Brun et al
2018,Miles et al 2018,Mölg et al 2019, Buri et al 2021)
and are difficult to constrain due to their variability in
space and time (Miles et al 2017a, Steiner et al 2019).

Detailed assessments of ice cliff melt rates and
volume losses have been performed for select glaciers,
almost exclusively in High Mountain Asia (Sakai et al
1998, 2002, Han et al 2010, Reid and Brock 2014,
Steiner et al 2015, Brun et al 2016, 2018, Watson et al
2017b, Buri and Pellicciotti 2018, Anderson et al 2021,
Mishra et al 2021, Stefaniak et al 2021). It is clear
that ice cliff geometry is a key control on their melt
rates: they experience differential melt rates based on
their aspect (Sakai et al 2002, Buri and Pellicciotti
2018), and their steep surface complicates their radi-
ative budget (Han et al 2010, Steiner et al 2015).
In addition, ice cliffs’ low albedo (Sakai et al 1998,
Steiner et al 2015, Watson et al 2017b) is likely to
enhance their energy receipts and melt rates relative
to debris-free glacier ice. Ice cliffs’ steep slopes addi-
tionally increase their true surface area, often by up
to 40% (Anderson et al 2021), further increasing their
melt contributions.

The complex dynamics of supraglacial ponds
(Röhl 2008, Benn et al 2012, Xin et al 2012, Watson
et al 2016, 2017a, Miles et al 2017a, 2017c, Steiner
et al 2019) make it challenging to assess their role at
the glacier scale (Salerno et al 2017, Miles et al 2018).
These features generally have a positive surface energy
balance and contribute to local ablation at the glacier
surface (Benn et al 2001, Röhl 2006, Miles et al 2016,
Salerno et al 2017), but their primary contribution to
glacier ablation is the dissipation of absorbed energy
to the glacier’s interior when they drain (Sakai et al
2000, Benn et al 2012, Miles et al 2016, 2018).

Several cliff and pond studies have assessed a
melt enhancement factor for these features relat-
ive to the general rate of glacier ablation beneath
the surrounding surface debris (Sakai et al 2002,
Immerzeel et al 2014, Brun et al 2018, Miles et al
2018, Mishra et al 2021), enabling a basic repres-
entation of these features in regional glacier melt
models (Kraaijenbrink et al 2017). This pragmatic
approach is to-date hampered by the limited geo-
graphic representativeness of the few field obser-
vations and the use of sub-debris melt as a refer-
ence rate. To progress with understanding of mass
losses for debris-covered glaciers, there is a need for
an assessment of the melt rates of debris-covered
glacier surfaces considering the geographic and cli-
matic domains where surface debris is widespread.
Wehypothesize that themelt enhancement of ice cliffs
and supraglacial ponds is highly variable due to dif-
ferences in reference sub-debris melt rates, but that

differences inmelt rates can be related directly to local
meteorological conditions.

We aim to address two key questions:

(a) How do the melt rates of ice cliffs and supragla-
cial ponds compare to sub-debris and bare ice
melt rates across different climates?

(b) Which physical parameters and meteorolo-
gical conditions drive the heterogeneity of melt
enhancement factors for debris, ice cliffs, and
supraglacial ponds relative to clean ice?

To address these questions, we model the surface
energy balance and associated melt rates for clean ice,
debris-covered ice, ice cliffs, and supraglacial ponds
using meteorological information from Automatic
Weather Stations (AWSs) at debris-covered glacier
sites around the world.

2. Methods

Wecompiled themost recent and complete AWSmet-
eorological datasets available for each region. Our
approach required a suite of high-quality meteoro-
logical observations encompassing much of an abla-
tion season, which varies by site, in order to provide
accurate forcing for our models and to ensure that
the results are representative for real debris-covered
glacier domains. Specifically, we required that sta-
tions include observations of downwelling measure-
ments for both shortwave and longwave radiation,
near-surface air temperature and relative humidity,
and wind speed. These criteria enabled us to identify
13 sites covering a range of geographic and climatic
conditions (figure 1; table 1). The available stations
covermost regions of the RandolphGlacier Inventory
(RGI, Pfeffer et al 2014) representing nearly all areas
with considerable surface debris (Scherler et al 2018)
and spanning the majority of the climatic envelope of
debris-covered glacier sites (figure 1, right).

Using these data, our analysis aimed to calculate
the melt rate for each surface type as if it were loc-
ated exactly at the AWS location. We note that met-
eorological conditions and surfacemelt of course vary
considerably across a single glacier, let alone region-
ally or globally. Our aim here is simply to ensure that
the diversity of meteorological forcing where supra-
glacial debris is found globally is represented in our
analysis, and to examine the effect of these conditions
on glacier surface melt rates. We note that supragla-
cial ponds, ice cliffs, and debris-covered ice are indeed
present at all the sites investigated.

We apply models of surface energy balance for
debris-covered ice (Steiner et al 2021), ice cliffs (Buri
et al 2016), and supraglacial ponds (Miles et al 2018),
and also model the energy balance of bare glacier
ice (Reid et al 2012) as a reference (see appendix).
We model these distinct surface types for periods
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Figure 1. The 13 glaciers studied in this analysis cover nearly all regions of the Randolph Glacier Inventory (RGI) (Pfeffer et al
2014) which exhibit considerable surface debris (Herreid and Pellicciotti 2020) (left). These 13 sites also occupy very distinct
climatic settings but are representative for the global climatic envelope of debris-covered ice (right), here evidenced by ablation
season mean temperature and precipitation derived fromWorldClim 2.1 (Fick and Hijmans 2017) for all pixels containing
debris-covered ice. Glacier labels: 24K—24K, ARO—Arolla, CNU—Changri Nup, DJA—Djankuat, EXP—Exploradores,
HAI—Hailuogou, KEN—Kennicott, LIR—Lirung, MIA—Miage, PIR—Piramide, SUL—Suldenferner, TAP—Tapado,
TAS—Tasman.

where the WorldClim 2.1 (Fick and Hijmans 2017)
monthly maximum air temperature is above 0 ◦C at
the station’s location, in order to compare only peri-
ods that are definitely within the local ablation sea-
son. It is worth noting that presence or absence of
supraglacial debris alters lapse rates of near-surface
air temperature (Steiner and Pellicciotti 2016, Shaw
et al 2017) and that although turbulent fluxes dif-
fer over debris due to surface characteristics (Steiner
et al 2018), similarity theory is equally applicable
for clean and debris-covered ice (Nicholson and
Stiperski 2020). The energy balancemodels for supra-
glacial ponds and ice cliffs have been developed
based onmeteorological data collected over debris, as
in this study.

These four energy-balance models (debris, cliff,
pond, clean) require specification of numerous phys-
ical parameters and characteristics (see appendix),
which are constrained for only selected sites glob-
ally (e.g. Nicholson and Benn 2012, Rounce et al
2021). We thus prescribed conservative probabil-
ity distributions for each parameter from the avail-
able literature, and determined 5000 independent,
random parameter sets for each model (table 2).
This Monte Carlo approach enabled us to ignore
real differences in cliff, pond, and debris charac-
teristics between sites, as we lack parameter estim-
ates from each site, and to instead focus on the
energy balance responses of each surface to dis-
tinct meteorological forcing. This allowed a com-
prehensive representation of all possible geometric
and meteorological scenarios for each surface and
site, therefore overcoming the potential bias of past
studies that have investigated selected features in
detail. Based on the 5000 Monte Carlo parameter
sets, we determined functional relationships between
debris thickness and sub-debris melt (Östrem 1959)
at each site by fitting a first-order rational expression
(Anderson and Anderson 2016). We also produced

distributions of melt rates for ice cliffs, supraglacial
ponds, and clean ice (figures 2 and 3).

We analysed the probabilistic melt rates to assess
the relative melt rates compared to sub-debris melt
rates at the 13 AWS locations. Specifically, we first
examined the ratio of melt of cliff, pond, and clean
ice surfaces to the sub-debris melt rate at each site.
This ratio yielded a factor comparable to the melt
‘enhancement factor’ reported by past studies as a
metric of the faster melt at ice cliffs compared to the
surrounding debris (Sakai et al 2002, Immerzeel et al
2014, Brun et al 2018, Miles et al 2018, Buri et al
2021). We additionally calculated the ratio of cliff,
pond, and sub-debris melt to clean glacier ice melt to
provide an alternative enhancement factor unbiased
by debris thickness, as in Rounce et al (2021). In
these calculations we considered the full set of simu-
lation results for each surface to produce probabilistic
enhancement factors.

We then analysed the meteorological and para-
metric drivers of each surface’smelt rate and enhance-
ment factor variability. We first determined the mean
value of key meteorological variables at each site
for its model period, then related these meteorolo-
gical characteristics to the variations of each surface’s
melt rates and enhancement factors across sites. We
additionally correlated the melt rates at each site to
each individual physical parameter (table 2) to assess
which are most vital to constrain with field meas-
urements, enabling us to compare the meteorological
and parametric sensitivities for each surface.

3. Results

3.1. Probabilistic melt rates of debris, cliffs, ponds,
and clean ice
Our results show a wide variety ofmelt rates (figure 2,
table 3). For sub-debris melt rates, the parametric
variability appears much greater than the variability
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Figure 2.Distribution of mean ablation season melt rates modelled at each site. Sites are ordered by the median modelled clean ice
melt rate. Glacier labels: TAP—Tapado, PIR—Piramide, EXP—Exploradores, ARO—Arolla, MIA—Miage, SUL—Suldenferner,
DJA—Djankuat, KEN—Kennicott, LIR—Lirung, CNU—Changri Nup, 24K—24K, HAI—Hailuogou, TAS—Tasman.

Figure 3. Østrem curves for the 13 study glaciers displayed as rational fits to the 5000 results for each site, along with shaded 95%
confidence intervals (see SuppMat for full results, fit parameters, and alternative fit types). Also shown are critical debris
thicknesses (CT) and their confidence intervals (CT c.i.) where applicable. Air temperature and shortwave radiation together
explain 80% of the variability in melt rates between sites for a 0.1 m debris layer. Glacier labels: 24K—24K, ARO—Arolla,
CNU—Changri Nup, DJA—Djankuat, EXP—Exploradores, HAI—Hailuogou, KEN—Kennicott, LIR—Lirung, MIA—Miage,
PIR—Piramide, SUL—Suldenferner, TAP—Tapado, TAS—Tasman.

between sites, leading to more than an order of mag-
nitude of variation for each site, but mean sub-debris
melt rates are below 0.02 m w.e. d−1 at all sites. Only
a few sites exhibit melt rates up to 0.05 w.e. m d−1 for
thin debris (24K, KEN, MIA, TAS).

Ice cliff melt rates also show considerable para-
metric variability, varying by a factor of two at most
sites. This roughly parallels the magnitude of vari-
ation between sites, with mean melt rates falling
between 0.09 (CNU, SUL) and 0.16 (DJA)mw.e. d−1.

Ice cliffs exhibit the highest melt rates of any surface
for all sites except CNU, where the distribution of ice
cliff melt rates broadly overlaps with the distributions
for supraglacial ponds and clean ice.

The mean supraglacial pond net energy balance
(hereafter expressed as a mean melt rate) is much
more variable between sites, and also varies in para-
metric sensitivity between sites. At PIR and TAP,
the seasonal energy balance is negative for nearly
all simulations, indicating overriding evaporation
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irrespective of parameter choice. At 24K and CNU,
on the other hand,meanmelt rates exceed 0.07mw.e.
d−1. Pondmeanmelt rates exhibit very high paramet-
ric spread for some sites (CNU, EXP, KEN, MIA) and
very tight distributions for others (LIR, TAS, SUL).

Modelled clean ice melt rates vary considerably
between sites, from 0.02 m w.e. d−1 at TAP to
0.09 m d−1 at KEN and CNU. As the physically-
meaningful parameter space for this model is bet-
ter constrained than for the other surfaces, modelled
melt rates for most sites exhibit a fairly tight spread,
with the exception of CNU. Conversely, TAS and EXP
exhibit a considerably tighter spread ofmodelledmelt
rates, despite showing lower mean modelled melt
rates than at many sites.

3.2. Sub-debris melt and controls
As has been demonstrated previously (Östrem 1959,
Rounce et al 2021), the presence of surface debris
lowers ice melt rates relative to a clean glacier surface.
Considering our hypothetical debris thickness distri-
bution (which has a median thickness of 0.5 m), this
leads to between 25× and 4×melt reduction on aver-
age. All sites show a strong reduction of melt rates
with increasing debris thicknesses (figure 3), and our
results indicate that debris thickness explains on aver-
age 67% of the variability in melt rates at a given
site. The 95% confidence interval for our rational fit
reaches 0 m d−1 for all sites between 1 and 2 m debris
thickness, but modelled melt rates diverge sharply for
thinner debris. Thermal conductivity (kd) also exerts
statistical control over sub-debris melt rates (mean p-
value< 0.001) and explains 8% of the melt rate vari-
ance for each site. z0d plays a role for sub-debris melt
rates at some sites (mean p-values 0.03) but explains
<1% of the melt rate variance (figure 6).

Considering a thickness of 0.1 m, our sub-debris
melt rate results indicate a spread of 4× between sites
based on meteorological conditions alone (figure 3).
This inter-site variability dwarfs the parametric vari-
ability of melt rates for all debris parameters other
than thickness. Our results indicate that the dif-
ferences in sub-debris melt rates between sites are
strongly correlated with differences in mean air tem-
perature and mean downwelling shortwave radiation
(figure 3 inset), which together account for 80% (50%
forTa alone) of the difference in sub-debrismelt rates
between sites for 0.1 m debris thickness, as for clean
ice (Braithwaite 1981). Notably, however, we did not
find a clear association between site-specific meteor-
ology and the sub-debris melt rate enhancement rel-
ative to a clean ice surface.

Since we determine the energy balance of debris-
covered and clean ice glacier surfaces in parallel,
we can leverage our results to consider, for each
site, the critical debris thickness where sub-debris
melt equates to the melt of a debris-free surface

(Reznichenko et al 2010). In theory, at this thickness
the increase in energy receipts due to low debris
surface albedo is compensated by the reduced effi-
ciency of conduction through thicker debris, but
more recent work has highlighted that this effect
may only occur in specific meteorological conditions
(Evatt et al 2015) or not at all (Fyffe et al 2020). Our
results indicate that at only six of 13 sites is themedian
clean ice melt rate equalled at a debris thickness on
our Østrem curve, generally<4 cm but 8.5 cm at TAS
(appendix). Three (ten) sites exhibited critical thick-
nesses for the 0.025 (0.975) confidence level. HAI,
MIA and TAS exhibited critical thicknesses for the full
confidence interval, while CNU, EXP and KEN did
not exhibit a critical debris thickness above 0.01 m
(the lower limit of our debris thickness parameter dis-
tribution) even at the 0.975 confidence level.

3.3. Melt enhancement factors for ice cliffs and
supraglacial ponds
Directly comparing the model results, we determine
enhancement factors normalised to sub-debris and
clean-icemelt (figure 4). Cliffs and ponds exhibit high
enhancement factors relative to debris-covered ice
(2–30× higher) for all sites, with the exception of the
pond energy balance at PIR and TAP. However, the
enhancement factor spread in all instances is nearly an
order of magnitude due to the variable debris thick-
ness and its strong influence on sub-debris melt rates.
Here, as we have maintained the theoretical para-
meter distributions between sites, the debris thick-
nesses do not match actual values at each site, so our
enhancement factors do not entirely align with past
studies leveraging, for example, geodetic mass bal-
ances (e.g. Immerzeel et al 2014, Brun et al 2018,
Mishra et al 2021). However, our results are broadly
in line with suggestions that cliffs and ponds enhance
melt by a factor of roughly 10–20 relative to thick
debris-covered areas (e.g. Sakai et al 2002, Immerzeel
et al 2014,Miles et al 2018, Buri et al 2021), while cliffs
and ponds enhance melt less where debris is generally
thinner and sub-debris melt rates are higher (Brun
et al 2018, Anderson et al 2021).We note that ice cliffs
enhance melt more than ponds at all 13 sites consid-
ering equal planimetric areas.

Considering enhancement factors relative to a
clean ice surface is more useful from amodelling per-
spective (Rounce et al 2021), and also reduces the
apparent enhancement factor spread due to debris
thickness variability. From this perspective (figure 4),
it becomes clear that ice cliffs generally melt at rates
2-3 times higher than a clean glacier ice surface.
Ponds, on the other hand, still show highly vari-
able enhancement factors, and some sites are con-
siderably more uncertain due to parametric factors.
Notably, our results show that ponds are nearly as
efficient as cliffs in absorbing atmospheric energy at
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Figure 4. Enhancement factors relative to sub-debris (EFd, left) and clean-ice (EFc , right) melt rates show regional patterns due to
meteorological similarities. Glaciers are grouped by mountain range: Cau—Caucasus, Himal—Himalaya, C And—Central
Andes. Glacier labels: TAP—Tapado, PIR—Piramide, EXP—Exploradores, ARO—Arolla, MIA—Miage, SUL—Suldenferner,
DJA—Djankuat, KEN—Kennicott, LIR—Lirung, CNU—Changri Nup, 24K—24K, HAI—Hailuogou, TAS—Tasman.

sites in the Himalayas (LIR, CNU, 24K, HAI), but
are much less efficient in all other locations. How-
ever, it is also crucial to note that not all energy
absorbed by ponds will lead to glacier ablation; pond
seasonal drainage and freezing must be accounted for
(Miles et al 2017a, 2018).

3.4. Parametric andmeteorological controls on ice
cliff melt
As for sub-debris melt, differences in ice cliff melt
rates between sites are most clearly associated to
differences in air temperature (p= 0.024, Pearson’s
r= 0.62; figure 6). As for clean glacier ice, although
shortwave radiation is the single largest energy flux,
variations in melt rates between locations are primar-
ily controlled by differences in turbulent fluxes, for
which air temperature is a good proxy (Braithwaite
1981). Our results indicate that sky-view factors (Vs,I

and Vs,L) and surface slope (βi) are controls of ice
cliff melt rates at all sites (mean p-values < 0.001,
≪0.001, and 0.01, respectively). Of these, Vs,L and
βi help to explain the variance between model real-
izations (38% and 6%, respectively). Ice cliff aspect
(ψi) varies in importance between sites but explains
on average 22% of the melt rate variance for a given
site (figure 6). Investigations at individual sites have
previously demonstrated that moderate aspect dif-
ferences in fact dramatically alter ice cliff evolution
(Sakai et al 2002, Buri and Pellicciotti 2018).

The enhancement factor for ice cliffs relative to
clean ice is also not directly associated to specific
meteorological conditions, but is inversely correl-
ated with clean ice melt rates themselves (figure 5).
That is, clean ice melt rates are driven in different

settings by distinct ablation regimes resulting from
the interaction of air temperature and incident radi-
ation (Hock 2005, Pellicciotti et al 2005), and all of
these conditions affect ice cliff melt rates as well,
with cliffs enhancing melt relative to clean glacier
ice in all settings. The extra energy absorption of
ice cliffs due to their low albedo represents a pro-
gressively smaller portion of the net energy bal-
ance as clean ice melt rates increase. Although the
ice cliff melt enhancement appears to decrease lin-
early (figure 5, R2 = 0.846), an exponential decay
converging on parity with clean ice melt is more
physically justified and explains slightly more of the
variance in our results (R2 = 0.881), also provid-
ing a straightforward implementation in glacier
melt models.

3.5. Parametric andmeteorological controls on
supraglacial pond energy balance
Our results indicate that differences in supraglacial
pond energy receipts are closely related to turbu-
lent fluxes differences, both at individual sites and
between sites. For any given site, only the water sur-
face temperature estimation parameters (Tws,0,Tws,m)
meaningfully control the supraglacial pondmelt rates
(mean p-values ≪0.001) explaining on average 51%
and 32% of the net energy balance variance, respect-
ively (figure 6). Meanwhile, the variations in pond
melt rates between sites are strongly associated with
variations in relative humidity (p= 0.005, Pearson’s
r= 0.722) and wind speed (p= 0.005, Pearson’s r=
−0.722), and thesemeteorological variables also con-
trol variations in the ponds’ enhancement factor rel-
ative to clean ice (figure 5). Turbulent fluxes have
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Figure 5. Ice cliff enhancement factors (left) are closely related to clean ice melt rates, and show decreasing cliff melt enhancement
with increasing clean ice melt rates. Pond enhancement factors (right) are represented well by relative humidity and wind speed,
as their energy balance is dominated by latent energy exchange; a non-linear model (red) only slightly outperforms a linear model
(blue).

previously been shown to be an important energy
flux for turbid supraglacial ponds in the Central
Himalaya (Sakai et al 2000, Miles et al 2016), and
these results extend that finding to show that they
are equally important globally, with contrasting out-
comes in terms of pond energy balance.

4. Discussion

4.1. Importance of cliffs and ponds
Studies have shown that ice cliffs and supraglacial
ponds can considerably enhance local and glacier-
wide overall melt rates for debris-covered glaciers
(Benn et al 2001, Sakai et al 2002, Thompson et al
2016, Salerno et al 2017, Miles et al 2018, Buri et al
2021). However, these features typically account for
less than 15% of the glacier’s debris-covered area
(e.g. Steiner et al 2019, Anderson et al 2021, Falaschi
et al 2021, Kneib et al 2021a), and recent work has
demonstrated that this melt enhancement is there-
fore not likely to fully compensate for the melt-
reducing effects of supraglacial debris (Brun et al
2018, Anderson et al 2021, Rounce et al 2021).

Our results provide several key pieces of inform-
ation to this area of inquiry. First, we show that
ice cliffs indeed melt at an enhanced rate for the
entire climatic range of supraglacial debris, At the
sites we have analysed, ice cliffs melt at 2–3 times
the rate of clean glacier ice and up to 20 times the
rate of debris-covered ice (depending on the debris
thickness). These are higher values than previously
accounted for but certainly insufficient to bring melt
rates for debris-covered areas to parity with clean ice
in the same setting (Brun et al 2018, Anderson et al
2021, Rounce et al 2021). We also note that the tur-
bid supraglacial ponds typical of debris-covered gla-
ciers absorb energy less quickly than clean glacier ice

in most settings that we studied. Consequently our
results support the conclusion that debris thickness
patterns dominate themass balance pattern of debris-
covered glaciers, while surface features provide het-
erogeneity and amplify the overallmelt rate in varying
degrees (Anderson et al 2021).

Nonetheless, these features’ ability to moderate
local and glacier-scale melt underlines the import-
ance of accounting for them carefully in glacier- and
regional-scale models of mass balance and evolu-
tion. We note that melt due to cliffs and ponds is
included in geodetic mass balance measurements,
so glacier model calibration to these measurements
implicitly represents these features (Compagno et al
2021, Rounce et al 2021), but in a static manner
that may not always represent their feedbacks to gla-
cier evolution (Ferguson and Vieli 2021, Rowan et al
2021). Crucially, however, supraglacial ponds and
cliffs are known to vary at seasonal and decadal times-
cales (Gardelle et al 2011, Benn et al 2012,Watson et al
2016, Miles et al 2017c, Mölg et al 2019, Steiner et al
2019,Mishra et al 2021, Kneib et al 2021b), necessitat-
ing an understanding and representation of how these
features and their distributionwill change in time and
highlighting the need to develop spatial distributions
of debris-covered ice facies. Considerable progress has
been achieved in this direction in recent years through
direct mapping of features and through association
of topographicmetrics (Herreid and Pellicciotti 2018,
Watson et al 2018, King et al 2020, Anderson et al
2021, Kneib et al 2021a), and our results inform the
next generation of glacier models to use such results
to account for ice cliff and sub-debris melt.

4.2. Priorities for newmeasurements
In this study we used on-debris meteorological meas-
urements to infer the primary meteorological and
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parametric controls of distinct surfaces’ melt rates.
We sourced data exclusively from meteorological sta-
tions positioned over supraglacial debris, and our
selection of sites roughly spans the climatic condi-
tions of supraglacial debris, but for some regions no
suitable data were available to us. We were unable to
identify suitable on-debris AWS records for the Low
Latitudes, Western Canada and US, Greenland, and
Iceland, regions where debris covers a moderate por-
tion of glacial area. Similarly, no suitable meteoro-
logical records were available for South Asia West,
Central Asia, and Svalbard. Very little supraglacial
debris is present for the Antarctic Periphery, Arctic
Canada, the Russian Arctic, Scandinavia, and North
Asia (Scherler et al 2018, Herreid and Pellicciotti
2020); these regions are not represented in our study.
Several other sites could be analysed for South Asia
East and we opted to include four sites within this
region. Although large-scale modelling studies have
demonstrated the utility of distributed climate reana-
lysis datasets, the use of high precision on-glacier
meteorological observations provides an important
foundation to test and evaluate energy balance mod-
els. In this respect, the geographical distribution of
sites in this study highlights the need for new obser-
vations in underrepresented areas where supraglacial
debris is prevalent.

A key question relating to debris-covered gla-
ciers relates to overall melt reduction or increase
in the debris-covered area (Rounce et al 2021). At
the local and glacier scale this depends heavily on
debris thickness, but debris thickness remains poorly
constrained globally. Rounce et al (2021) have pro-
duced the first global maps of debris thickness and
sub-debris enhancement factors, opening the pos-
sibility of representing sub-debris melt within large-
scale models. However, the large parametric uncer-
tainties underlying current data products may limit
the utility of such datasets for projecting future melt.
To reduce modelled debris thickness uncertainties,
though, new methods are needed to constrain other
debris properties. Furthermore, due to temporal dis-
crepancies between the underlying global supragla-
cial debris area (Scherler et al 2018) and the Ran-
dolph Glacier Inventory (RGI, Pfeffer et al 2014),
this dataset does not always represent debris-covered
areas well (Herreid and Pellicciotti 2020). Regard-
ing our sites, for example, the debris-covered area of
Tapado Glacier is not represented within the RGI (or,
therefore, the Scherler et al (2018) or Rounce et al
(2021) products), although this complex debris-rich
composite glacier landform is well-known (Pourrier
et al 2014). Future efforts are needed to provide date-
consistent glacier extent, debris extent, and debris
thickness datasets.

Finally, we note that the parametric variance
is considerable for all four models, indicating that

accurate knowledge of local properties is crucial for
energy balance modelling. For subdebris melt, the
average parametric variance (here indicated by the
inter-site mean of the standard deviation of melt
rates for each site) exceeds the meteorological vari-
ance (indicated by the standard deviation of site
mean melt rates) by a factor of two, due to the
strong control of debris thickness. For ice cliffs,
the parametric variance is equal to the meteorolo-
gical variance due to the importance of cliff geo-
metry. For both clean ice and supraglacial ponds,
parametric variance is half the meteorological vari-
ance. Consequently, measuring debris properties is
more important for accurate sub-debris melt rate
estimation than precise local meteorology. Measur-
ing ice cliff geometry, for example leveraging aerial,
terrestrial, or satellite photogrammetry to produce
high-resolution digital elevation models (Kraaijen-
brink et al 2016, Watson et al 2017b, Brun et al
2018), is as important for estimating ice cliff melt as
understanding local meteorology. On the other hand,
an accurate representation of meteorological condi-
tions is more important than local surface proper-
ties for estimating clean ice and supraglacial pond
energy balance.

5. Conclusions

Our study used meteorological records collected
over 13 debris-covered glacier sites around the
world with four energy-balance models relevant to
debris covered ice. Using Monte-Carlo simulations
with meaningful distributions of physical paramet-
ers allowed us to disentangle the parametric and cli-
matic drivers of melt rate and melt enhancement dif-
ferences. Our key findings are that:

• Knowledge of site-specific physical parameters
(debris thickness and thermal conductivity) is
crucial for estimating sub-debris melt. However,
assuming equivalent parameter distributions, the
spatial variability in sub-debris melt rates is best
explained by air temperature.

• Sub-debris melt rates are lower than clean ice and
ice cliffs at all sites, and only six of thirteen sites
exhibited a critical thickness. Given our empirical
parameter distributions, sub-debris melt is gener-
ally one-tenth that of clean ice melt.

• Ice cliff melt is 2–3 times higher than clean ice
at our study sites, but this melt enhancement is
small when clean ice melt rates are already high.
For a given location, ice cliff melt rates are most
strongly controlled by geometry: radiative view
factors, slope and aspect.

• The supraglacial pond net energy receipts are
highly variable between sites, largely controlled by
relative humidity and wind speed. The net energy
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receipts for supraglacial ponds are very sensitive to
water surface temperature (derived parametrically
in our model), but are generally lower than clean
ice in the equivalent setting, and are in some cases
negative (evaporation-dominated).

• Climatic similarities between sites lead to distinct-
ive regional patterns of melt rates and relative melt
enhancement for each surface.

• We identify that variability in supraglacial pond
and ice cliff melt rates and melt enhancement
factors can be effectively parametrized independ-
ent of debris (relative to clean icemelt), and are dir-
ectly related to meteorological conditions, but that
physical parameters can lead to considerable differ-
ences between locations at any site.

Consequently, our results are promising for
effective representation of ice cliffs and supraglacial
ponds in larger-scale models. In particular, provided
that regional distributions of cliffs and ponds are bet-
ter known in the future, our study opens efficient
approaches to estimate their melt rates and contri-
bution to glacier-scale ablation regionally. However,
our results also emphasize the need to account for
site-specific physical parameters, which have a strong
influence on modelled melt rates.
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Energy balance models
We use established melt models to calculate the sur-
face energy balance for a variety of glacier surface
facies, always assuming that the glacier surface is
snow-free (and in the ablation area) for each weather
station. As the models have already been demon-
strated, here we describe only the differences inmodel
implementation from the studies in which they were
established. For all models, we calculate the energy
balance for a planimetric 1 m2 patch of the surface as
if directly situated beneath themeteorological station.
For all model results, we report the resultingmelt rate
in water-equivalent (m w.e.).

Clean ice melt modelling
The melt rate for exposed, clean glacier ice is cal-
culated using the clean-ice energy-balance model
of Reid et al (2012), upon which the three other
models herein have been developed. For consist-
ency with those models, we assume that the sur-
face is free of snow-cover and at the melting point.
This is reasonable for most sites considering the rel-
evant spatial and temporal domain (debris-covered
ablation area during the ablation season), although
ablation-season snowfall can modulate subsequent
ablation (e.g. Fugger et al 2021). This model calcu-
lates the energy balance using in situ measurements
of air temperature, relative humidity, wind speed,
and incoming shortwave and longwave radiation,
and requires parameters for ice albedo, roughness,
and emissivity.

Sub-debris ice melt modelling
Sub-debris melt is calculated at the point scale with
the model presented in detail in Steiner et al (2021).
Incoming shortwave and longwave radiative fluxes are
taken frommeasurements. Outgoing shortwave radi-
ation is calculated with the prescribed albedo of the
debris surface. Turbulent fluxes are calculated using
the standard bulk approach. The model solves the
flux through the debris iteratively at multiple layers of
fixed thickness until surface temperature converges.
This surface temperature is used for the calculation of
outgoing longwave and sensible heat flux and is also

used by the cliff model to derive longwave radiation
emitted by the debris.

Ice cliff melt modelling
Ice cliff melt is calculated at the point scale, using
measured station data of air temperature, relative
humidity, wind speed, incoming short- and long-
wave radiation. Local shading is simulated based on
slope and aspect of the cliff, assuming an even cliff
shape and a constant horizon of 20 degrees for the
far-topogaphy and determines the amount and tim-
ing of direct and diffuse shortwave radiation at the
cliff surface. Viewing factors and emissivity values
are taken from the parameter space and influence,
togetherwith the calculated surface temperature from
the sub-debris ice melt model, the amount of long-
wave radiation emitted from the surrounding debris
and received at the ice cliff surface. The model is
described in detail in Buri et al (2016).

Supraglacial pond energy balance
The supraglacial pond energy balance is calculated at
the point scale using the model of Miles et al (2018),
which was developed specifically for meteorological
measurements collected over debris (Miles et al 2016),
using measured station data of air temperature, rel-
ative humidity, wind speed, incoming shortwave and
longwave radiation. The parametrization for water
surface temperature has been established based on
contemporaneous water surface and air temperature
measurements (Miles et al 2018). For this implement-
ation, we do not perform a sky view correction based
on nearby topography. Consequently, six parameters
are needed for this model: three parameters to estim-
ate water surface temperature, as well as an estimate
of water surface roughness, broadband albedo, and
emissivity.

Energy balance physical parameters
The key parameters specified for each model, includ-
ing the probability distribution of values, is depicted
in table 2. The probability distributions were derived
based on available literature, and were used to derive
5000 randomly-sample model realizations.
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Figure 6.Mean p-value (left) and R2 (right) for correlations between melt rates and individual parameters at each site.
Selected parameters were modified by log(x) (for d, all z0) or sin(x) (for ϕi) before correlation.
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