9 research outputs found

    Predicting functional responses in agro-ecosystems from animal movement data to improve management of invasive pests

    Get PDF
    Functional responses describe how changing resource availability affects con- sumer resource use, thus providing a mechanistic approach to prediction of the invasibility and potential damage of invasive alien species (IAS). However, functional responses can be context dependent, varying with resource characteristics and availability, consumer attributes, and environmental variables. Identifying context dependencies can allow invasion and damage risk to be predicted across different ecoregions. Understanding how ecological factors shape the functional response in agro-ecosystems can improve predictions of hotspots of highest impact and inform strategies to mitigate damage across locations with varying crop types and avail- ability. We linked heterogeneous movement data across different agro-ecosystems to predict ecologically driven variability in the functional responses. We applied our approach to wild pigs (Sus scrofa), one of the most successful and detrimental IAS worldwide where agricultural resource depredation is an important driver of spread and establishment. We used continental- scale movement data within agro-ecosystems to quantify the functional response of agricul- tural resources relative to availability of crops and natural forage. We hypothesized that wild pigs would selectively use crops more often when natural forage resources were low. We also examined how individual attributes such as sex, crop type, and resource stimulus such as dis- tance to crops altered the magnitude of the functional response. There was a strong agricul- tural functional response where crop use was an accelerating function of crop availability at low density (Type III) and was highly context dependent. As hypothesized, there was a reduced response of crop use with increasing crop availability when non-agricultural resources were more available, emphasizing that crop damage levels are likely to be highly heterogeneous depending on surrounding natural resources and temporal availability of crops. We found sig- nificant effects of crop type and sex, with males spending 20% more time and visiting crops 58% more often than females, and both sexes showing different functional responses depend- ing on crop type. Our application demonstrates how commonly collected animal movement data can be used to understand context dependencies in resource use to improve our under- standing of pest foraging behavior, with implications for prioritizing spatiotemporal hotspots of potential economic loss in agro-ecosystems

    Healthy people with nature in mind

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.BACKGROUND: The global disease burden resulting from climate change is likely to be substantial and will put further strain on public health systems that are already struggling to cope with demand. An up- stream solution, that of preventing climate change and associated adverse health effects, is a promising approach, which would create win-win-situations where both the environment and human health benefit. One such solution would be to apply methods of behaviour change to prompt pro-environmentalism, which in turn benefits health and wellbeing. DISCUSSION: Based on evidence from the behavioural sciences, we suggest that, like many social behaviours, pro- environmental behaviour can be automatically induced by internal or external stimuli. A potential trigger for such automatic pro-environmental behaviour would be natural environments themselves. Previous research has demonstrated that natural environments evoke specific psychological and physiological reactions, as demonstrated by self-reports, epidemiological studies, brain imaging techniques, and various biomarkers. This suggests that exposure to natural environments could have automatic behavioural effects, potentially in a pro-environmental direction, mediated by physiological reactions. Providing access and fostering exposure to natural environments could then serve as a public health tool, together with other measures, by mitigating climate change and achieving sustainable health in sustainable ecosystems. However, before such actions are implemented basic research is required to elucidate the mechanisms involved, and applied investigations are needed to explore real world impacts and effect magnitudes. As environmental research is still not sufficiently integrated within medical or public health studies there is an urgent need to promote interdisciplinary methods and investigations in this critical field. Health risks posed by anthropogenic climate change are large, unevenly distributed, and unpredictable. To ameliorate negative impacts, pro-environmental behaviours should be fostered. Potentially this could be achieved automatically through exposure to favourable natural environments, with an opportunity for cost-efficient nature-based solutions that provide benefits for both the environment and public health

    Predicting functional responses in agro-ecosystems from animal movement data to improve management of invasive pests

    Get PDF
    Functional responses describe how changing resource availability affects con- sumer resource use, thus providing a mechanistic approach to prediction of the invasibility and potential damage of invasive alien species (IAS). However, functional responses can be context dependent, varying with resource characteristics and availability, consumer attributes, and environmental variables. Identifying context dependencies can allow invasion and damage risk to be predicted across different ecoregions. Understanding how ecological factors shape the functional response in agro-ecosystems can improve predictions of hotspots of highest impact and inform strategies to mitigate damage across locations with varying crop types and avail- ability. We linked heterogeneous movement data across different agro-ecosystems to predict ecologically driven variability in the functional responses. We applied our approach to wild pigs (Sus scrofa), one of the most successful and detrimental IAS worldwide where agricultural resource depredation is an important driver of spread and establishment. We used continental- scale movement data within agro-ecosystems to quantify the functional response of agricul- tural resources relative to availability of crops and natural forage. We hypothesized that wild pigs would selectively use crops more often when natural forage resources were low. We also examined how individual attributes such as sex, crop type, and resource stimulus such as dis- tance to crops altered the magnitude of the functional response. There was a strong agricul- tural functional response where crop use was an accelerating function of crop availability at low density (Type III) and was highly context dependent. As hypothesized, there was a reduced response of crop use with increasing crop availability when non-agricultural resources were more available, emphasizing that crop damage levels are likely to be highly heterogeneous depending on surrounding natural resources and temporal availability of crops. We found sig- nificant effects of crop type and sex, with males spending 20% more time and visiting crops 58% more often than females, and both sexes showing different functional responses depend- ing on crop type. Our application demonstrates how commonly collected animal movement data can be used to understand context dependencies in resource use to improve our under- standing of pest foraging behavior, with implications for prioritizing spatiotemporal hotspots of potential economic loss in agro-ecosystems

    Social support and age influence distress outcomes differentially across urban, regional and remote Australia: an exploratory study

    Get PDF
    Background: The variation of determinants of mental health with remoteness has rarely been directly examined. The current research aims to examine whether the association of psychosocial factors with psychological distress outcomes varies with increasing remoteness. Methods: Participants were persons aged 55 and over from two community cohorts sampling from across rural and urban New South Wales (N=4219; mean age=69.00 years; 46.1% male). Measures of social support from these studies were calibrated to facilitate comparison across the sample. Remoteness was assessed using a continuous measure, the Accessibility/Remoteness Index of Australia. The association between demographic characteristics, social support, remoteness, and their interactions with remoteness in the prediction of high psychological distress (cut-off> 21 on the Kessler 10) were examined using logistic regression. Results: Not being in a married or defacto relationship (OR 0.69; 99% CI 0.51-0.94), lower education (OR 0.52; 99% CI 0.38-0.71) and decreased social support (OR 0.36; 99% CI 0.31-0.42) significantly predicted psychological distress. There was a significant interaction of age and remoteness (OR 0.84; 99% CI 0.67-1.00), indicating that as remoteness increases, older persons are less likely to be highly distressed, as well as a significant interaction of social support and remoteness (OR 1.22; 99% CI 1.04-1.44), indicating that as remoteness decreases, persons with low levels of social support are more likely to be highly distressed. Conclusions: Remoteness may moderate the influence of social support and age on psychological distress outcomes

    Environmental influence in the brain, human welfare and mental health

    No full text

    Microbiota, Immunoregulatory Old Friends and Psychiatric Disorders

    No full text
    corecore