173 research outputs found

    Oil droplet impact dynamics in aero-engine bearing chambers: correlations derived from direct numerical simulations

    Get PDF
    Bearing Chambers in Aero-Engines are located near the rolling-element type of bearings which support the shafts and accomodate the resulting thrust loads. One of the main task of the bearing chambers is, beside an efficient scavenging of the lubricating oil, the cooling of the hot compartments. A very complex two-phase air-oil flow takes usually place in these bearing chambers consisting of oil droplet-laden air flows and shear-driven liquid wall films. The interaction of the droplets with the wall films is significantly influencing the wall heat transfer and the cooling performance of these systems. For this reason, a detailed characterization and modelling of the mass and momentum exchange between droplets and wall films for the unique impingement parameter range in bearing chambers is inevitable. This scientific report investigates the oil droplet impact dynamics for typical impingement regimes relevant to aero-engine bearing chambers. The application of a Direct Numerical Simulation (DNS) technique based on the Volume-of-Fluid (VOF) method and coupled with a gradient-based adaptive mesh refinement (AMR) technique allowed to characterize the drop impact dynamics during various single micro- and millimeter drop impacts onto thin and thick films. With the help of a special numerical treatment, a self-perturbing mechanism is installed that leads to the correct resolution of the crown disintegration process. The numerical methodology was thoroughly validated using the experimental results of millimeter sized drop impacts onto deep liquid pools. These results were developed with an enhanced back-illuminated high-speed imaging and Particle Tracking Velocimetry (PTV) technique. New insights into the cavity penetration, the crown’s breakup dynamics and the secondary droplet characteristics following a single drop impact have been developed with the help of the isolated variation of different parameters of influence. Particularly the influence of the Froude number, the impingement angle, and the cavity-wall interaction delivered results to date not reported in scientific literature. Beside the advances in fundamental physics describing the drop impact dynamics with the help of the numerical and experimental results, a set of correlations could also be derived. From these correlations, a drop-film interaction model was formulated that is suitable for the parameter range found in bearing chambers

    Oil droplet impact dynamics in aero-engine bearing chambers: correlations derived from direct numerical simulations

    Get PDF
    Bearing Chambers in Aero-Engines are located near the rolling-element type of bearings which support the shafts and accomodate the resulting thrust loads. One of the main task of the bearing chambers is, beside an efficient scavenging of the lubricating oil, the cooling of the hot compartments. A very complex two-phase air-oil flow takes usually place in these bearing chambers consisting of oil droplet-laden air flows and shear-driven liquid wall films. The interaction of the droplets with the wall films is significantly influencing the wall heat transfer and the cooling performance of these systems. For this reason, a detailed characterization and modelling of the mass and momentum exchange between droplets and wall films for the unique impingement parameter range in bearing chambers is inevitable. This scientific report investigates the oil droplet impact dynamics for typical impingement regimes relevant to aero-engine bearing chambers. The application of a Direct Numerical Simulation (DNS) technique based on the Volume-of-Fluid (VOF) method and coupled with a gradient-based adaptive mesh refinement (AMR) technique allowed to characterize the drop impact dynamics during various single micro- and millimeter drop impacts onto thin and thick films. With the help of a special numerical treatment, a self-perturbing mechanism is installed that leads to the correct resolution of the crown disintegration process. The numerical methodology was thoroughly validated using the experimental results of millimeter sized drop impacts onto deep liquid pools. These results were developed with an enhanced back-illuminated high-speed imaging and Particle Tracking Velocimetry (PTV) technique. New insights into the cavity penetration, the crown’s breakup dynamics and the secondary droplet characteristics following a single drop impact have been developed with the help of the isolated variation of different parameters of influence. Particularly the influence of the Froude number, the impingement angle, and the cavity-wall interaction delivered results to date not reported in scientific literature. Beside the advances in fundamental physics describing the drop impact dynamics with the help of the numerical and experimental results, a set of correlations could also be derived. From these correlations, a drop-film interaction model was formulated that is suitable for the parameter range found in bearing chambers

    The combination of DInSAR and facility damage data for the updating of slow-moving landslide inventory maps at medium scale

    Get PDF
    Abstract. Testing innovative procedures and techniques to update landslide inventory maps is a timely topic widely discussed in the scientific literature. In this regard remote sensing techniques – such as the Synthetic Aperture Radar Differential Interferometry (DInSAR) – can provide a valuable contribution to studies concerning slow-moving landslides in different geological contexts all over the world. In this paper, DInSAR data are firstly analysed via an innovative approach aimed at enhancing both the exploitation and the interpretation of remote sensing information; then, they are complemented with the results of an accurate analysis of survey-recorded damage to facilities due to slow-moving landslides. In particular, after being separately analysed to provide independent landslide movement indicators, the two datasets are combined in a DInSAR-Damage matrix which can be used to update the state of activity of slow-moving landslides. Moreover, together with the information provided by geomorphological maps, the two datasets are proven to be useful in detecting unmapped phenomena. The potentialities of the adopted procedure are tested in an area of southern Italy where slow-moving landslides are widespread and accurately mapped by using geomorphological criteria

    Clues of wildfire-induced geotechnical changes in volcanic soils affected by post-fire slope instabilities

    Get PDF
    Wildfires can significantly affect mountain hillslopes through the combustion of trees and shrubs and changes in soil properties. The type and magnitude of the associated post-fire effects depend on several factors, including fire severity and soil physical-mechanical-hydraulic features that, coupled with climate and topographic conditions, may cause increased runoff, erosion, and slope instability as consequence of intense rainfall. The post-fire response of slopes is highly site-specific. Therefore, in situ surveys and laboratory tests are needed to quantify changes in key soil parameters. The present study documents the post-fire physical and hydromechanical properties of pyroclastic topsoil collected from three test sites that suffered wildfires and rainfall-induced post-fire events in 2019 and 2020 in the Sarno Mountains (Campania Region, southern Italy). The tested pyroclastic soils in burned conditions show (i) no significant changes in grain size distribution, soil organic matter, and specific gravity; (ii) a deterioration in shear strength in terms of decreased soil cohesion caused by the fire-induced weakening of root systems; and (iii) a decrease in hydraulic conductivity. Accordingly, it can be argued that the documented post-fire erosion responses were mainly caused by the reduced cohesion and hydraulic conductivity of the burned topsoil layer, as well as by the loss of vegetation cover and the deposition of fire residues. Although deserving further deepening, this study can represent the necessary background for understanding the initiation mechanism of post-fire erosion processes in the analyzed area and on several natural slopes under similar conditions

    An unusual clinical and biochemical presentation of ornithine transcarbamylase deficiency in a male patient.

    Get PDF
    We report a male patient with a history of recurrent idiopathic vomiting, normal plasma ammonia and glutamine concentrations in acute phase, who died at 3 years of age. Ornithine transcarbamylase deficiency was diagnosed after detecting elevated urinary orotate concentrations in a sample collected just before death, and the diagnosis was confirmed by DNA analysis

    Functional Analysis of a Breast Cancer-Associated Mutation in the Intracellular Domain of the Metalloprotease ADAM12

    Get PDF
    A recently identified breast cancer-associated mutation in the metalloprotease ADAM12 alters a potential dileucine trafficking signal, which could affect protein processing and cellular localization. ADAM12 belongs to the group of A Disintegrin And Metalloproteases (ADAMs), which are typically membrane-associated proteins involved in ectodomain shedding, cell-adhesion, and signaling. ADAM12 as well as several members of the ADAM family are over-expressed in various cancers, correlating with disease stage. Three breast cancer-associated somatic mutations were previously identified in ADAM12, and two of these, one in the metalloprotease domain and another in the disintegrin domain, were investigated and found to result in protein misfolding, retention in the secretory pathway, and failure of zymogen maturation. The third mutation, p.L792F in the ADAM12 cytoplasmic tail, was not investigated, but is potentially significant given its location within a di-leucine motif, which is recognized as a potential cellular trafficking signal. The present study was motivated both by the potential relevance of this documented mutation to cancer, as well as for determining the role of the di-leucine motif in ADAM12 trafficking. Expression of ADAM12 p.L792F in mammalian cells demonstrated quantitatively similar expression levels and zymogen maturation as wild-type (WT) ADAM12, as well as comparable cellular localizations. A cell surface biotinylation assay demonstrated that cell surface levels of ADAM12 WT and ADAM12 p.L792F were similar and that internalization of the mutant occurred at the same rate and extent as for ADAM12 WT. Moreover, functional analysis revealed no differences in cell proliferation or ectodomain shedding of epidermal growth factor (EGF), a known ADAM12 substrate between WT and mutant ADAM12. These data suggest that the ADAM12 p.L792F mutation is unlikely to be a driver (cancer causing)-mutation in breast cancer

    Expression of FAP-1 by human colon adenocarcinoma: implication for resistance against Fas-mediated apoptosis in cancer

    Get PDF
    Although colon carcinoma cells express Fas receptors, they are resistant to Fas-mediated apoptosis. Defects within the intracellular Fas signal transduction may be responsible. We investigated whether the Fas-associated phosphatase-1 (FAP-1), an inhibitor of Fas signal transduction, contributed to this resistance in colon carcinomas. In vivo, apoptosis of cancer cells was detected in situ using terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling ( TUNEL). FAP-1, FasR, and Fas ligand (FasL) were detected using immunohistochemistry. In vitro, colon carcinoma cells were primarily cultured, and their sensitivity to Fas-mediated apoptosis was evaluated by treatment with agonistic anti-FasR CH11 IgM monoclonal antibody in the presence or absence of synthetic Ac-SLV (serine-leucine-valine) tripeptide. Fas-associated phosphatase-1 expression was detected in 20 out of 28 colon adenocarcinomas. In vivo, a positive correlation between the percentage of apoptotic tumour cells and the number of FasL-positive tumour infiltrating lymphocytes was observed in FAP-1 negative cancers, but not in FAP-1-positive ones. Primarily cultured colon cancer cells, which were refractory to CH-11-induced apoptosis, had higher expression of FAP-1 on protein and mRNA levels than the sensitive group. Resistance to Fas-mediated apoptosis in tumour cells could be abolished by Ac-SLV tripetides. Fas-associated phosphatase-1 expression protects colon cancer cells from Fas-mediated apoptosis, and blockade of FAP-1 and FasR interaction sensitises tumour cells to Fas-dependent apoptosis
    • …
    corecore