4 research outputs found
Geometrical Measures Obtained from Pretreatment Postcontrast T1 Weighted MRIs Predict Survival Benefits from Bevacizumab in Glioblastoma Patients.
BACKGROUND: Antiangiogenic therapies for glioblastoma (GBM) such as bevacizumab (BVZ), have been unable to extend survival in large patient cohorts. However, a subset of patients having angiogenesis-dependent tumors might benefit from these therapies. Currently, there are no biomarkers allowing to discriminate responders from non-responders before the start of the therapy. METHODS: 40 patients from the randomized GENOM009 study complied the inclusion criteria (quality of images, clinical data available). Of those, 23 patients received first line temozolomide (TMZ) for eight weeks and then concomitant radiotherapy and TMZ. 17 patients received BVZ+TMZ for seven weeks and then added radiotherapy to the treatment. Clinical variables were collected, tumors segmented and several geometrical measures computed including: Contrast enhancing (CE), necrotic, and total volumes; equivalent spherical CE width; several geometric measures of the CE 'rim' geometry and a set of image texture measures. The significance of the results was studied using Kaplan-Meier and Cox proportional hazards analysis. Correlations were assessed using Spearman correlation coefficients. RESULTS: Kaplan-Meier and Cox proportional hazards analysis showed that total, CE and inner volume (p = 0.019, HR = 4.258) and geometric heterogeneity of the CE areas (p = 0.011, HR = 3.931) were significant parameters identifying response to BVZ. The group of patients with either regular CE areas (small geometric heterogeneity, median difference survival 15.88 months, p = 0.011) or those with small necrotic volume (median survival difference 14.50 months, p = 0.047) benefited substantially from BVZ. CONCLUSION: Imaging biomarkers related to the irregularity of contrast enhancing areas and the necrotic volume were able to discriminate GBM patients with a substantial survival benefit from BVZ. A prospective study is needed to validate our results.This work has been supported by Ministerio de Economía y Competitividad/FEDER, Spain [grant number MTM2015-71200-R], Consejería de Educación Cultura y Deporte from Junta de Comunidades de Castilla-La Mancha, Spain [grant number PEII-2014-031-P] and James S. Mc. Donnell Foundation 21st Century Science Initiative in Mathematical and Complex Systems Approaches for Brain Cancer [Special Initiative Collaborative – Planning Grant 220020420 and Collaborative award 220020450]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
White cabbage (Brassica oleracea var. capitata f. alba) : botanical, phytochemical and pharmacological overview
White cabbage (Brassica oleraceae var. capitata f. alba) is a cruciferous vegetable used worldwide as a food and in traditional medicine. Due to its common availability in local markets, affordability, and consumer preference, it represents a significant source of phytonutrients in the human diet. This review provides an overview of white cabbage origin, taxonomy, geographical distribution, botanical characteristics, and contemporary and traditional uses, as well as its phytochemicals and pharmacology. Special emphasis is placed on a health-promoting phytochemicals such as glucosinolates, polyphenols, and vitamins, as well as anticancerogenic, antioxidant, anti- inflamantory and cardioprotective effects. The majority of so far published research on white cabbage was focused on qualitative determination of phytochemicals (targeted analysis), while only few recent papers published data based on untargeted metabolomic profiling. Hence, this review discusses and emphasizes a further need of studying the white cabbage phytochemicals using modern metabolomics platforms which will enable scientists to pinpoint the exact bioactive metabolites which are responsible for certain bioactivity