148 research outputs found

    Engaging Faculty in Leading Collaborative Research

    Get PDF

    Genetic Characterization of a New U.S. Bovine Rotavirus Isolate

    Get PDF
    We have identified a new group A rotavirus associated with diarrheic calves in the field. The VP7 gene of this virus (designated VMRI-29), appears to differ genetically from that of the reference strain NCDV-Lincoln. Studies are underway to determine the importance of this genetic variant in the etiology of rotavirus-induced calf diarrhea

    Chapter 4- Human Dimensions of Water for Food Production

    Get PDF
    Feeding 9 Billion and Maintaining the Planet: Meeting the Challenge of 2050 Environmental concerns, which fall outside normal market powers, require special incentives and consideration in water resource decisions, Marty Matlock said. Given that the world’s population now consumes past the point of sustainability, should sustainability be a market choice for consumers? “This should be pre-competitive,” Matlock said. “The consumers should have confidence that everything they buy complies with a certain threshold of humanity, of behavior, of ethics and sustainability.” The market has the power to move materials, goods and services from areas of plenty to those of scarcity. The problem is that the market is not responding to water scarcity, in part because crops are grown where there is no water. For example, in Brazil, areas that once were rainforest now grow 2.4 crops annually for export to China. “They’re exporting de facto water to China,” Matlock said. Another example stems from the 1 billion people who lack access to water and the 2.4 billion who don’t have basic sanitation. Every day, waterborne diseases kill 5,400 children. “That’s the cost of this failure of technology – failure of civilizations,” Matlock said. “It’s a pretty dramatic cost.” Global climate change will increase water scarcity in already water-stressed areas. Although agriculture no longer accounts for 90 percent of global water use, as it did in 1900, agricultural water use has increased fivefold since then. Competing with other sectors for limited water affects the many other uses that are not monetized, such as biodiversity. The Colorado and Ganges rivers offer examples of dramatic decreases in water discharge due to overallocation. Peak flows have not changed, but critical base flows have dropped considerably over time. “It’s hard to have a functional, viable aquatic ecosystem without the aquatic,” Matlock said. Rice, which accounts for 15 percent of human water use, presents another problem. But improvement is possible, Matlock said. Human Dimensions of Water for Food Production Anheuser-Busch InBev, for example, achieved 4.7 percent per-unit reductions in rice culture, saving 3.5 billion liters of water in five years. Water intake is only one issue; equally important is water effluent. From an ecological standpoint, given grossly limited incentive funding, Matlock believes profitable production practices should not be incentivized. “If you already have an incentive for conserving water − reducing soil erosion − then we don’t need to give you more money to do that which you ought to be doing anyway, because the marketplace will weed you out if you don’t perform,” he said. “It’s the things that we don’t incentivize, like preservation of riparian zones, that we should perhaps be incentivizing with our limited resources.” The Mesoamerican Barrier Reef System offers an example of the interconnectedness of agriculture effluent and environmental harm. Pollutants, particularly sediment and nutrients carried downstream from plantations to the Caribbean Sea, have the equivalent effect of a 10-degree temperature change, bleaching the coral reefs. Impacts that are acceptable with 6.7 billion people will not be with 9 billion, Matlock concluded. If management happens only to things that are measured, and not everything can be measured, which metrics are important and how can they be incentivized? “We have to shift our thinking from maximizing any one variable or metric to optimizing several key ones.

    Chapter 6- A View from Agricultural Producers

    Get PDF
    Rainfed and Irrigated Production in Argentina Martin Pasman, an Argentine agronomist with a master’s degree in business administration, began his career as a consultant to farmers and has experience in Argentina, Uruguay, Paraguay and Brazil, where he was instrumental in helping to develop 80,000 hectares in the western part of the Cerrado area. His farming experience stems from his family’s farms, located in five areas of Argentina. Most are rainfed, but one area receives less than 500 millimeters of rain annually. Pasman also runs an irrigation business serving 80 percent of the Argentine market, giving him vast experience in developing irrigated land. Argentina is the second-largest South American country after Brazil and is one-third the size of the U.S. One-third of Argentina receives more than 800 millimeters of rain and depends upon rainfed agriculture, while the majority receives less than 800 millimeters. Argentina cultivates 30 million hectares per year, of which 2.2 million are irrigated. Total production output is 90 million metric tons, and about 70 percent of farmers in Argentina practice no-till agriculture. Pasman’s family came to Argentina from the U.S. around 1825, when it was primarily cattle country. His family brought the first Aberdeen Angus bull to Argentina and also helped develop agriculture. In the 1970s, the family farmed 6,000 hectares, of which only 500 were used for crops, yielding 3.5 tons of corn per hectare and 1.5 tons of wheat per hectare. They plowed the land and used few herbicides and no fertilizers. The majority of the land was used to raise 3,000 head of cattle, which were finished in natural pastures. Today, the family’s farm operation has expanded to 20,000 hectares, 15,000 of them used for agriculture. In the low-productivity land, they also manage 9,000 head of cattle in cow-calf operations, finishing the animals in American style feedlots. In rainfed fields, the Pasmans produce 8 tons of corn per hectare and 3 tons of wheat; under irrigation, they get 12 tons of corn and 6 tons of wheat. The most important crop, however, is soybeans. They also grow potatoes, corn and sunflower seeds for Monsanto Company. The farm uses 42 pivots to irrigate 4,000 hectares, and about 80 percent of the farm is double-cropped: wheat plus soybeans, seed corn plus soybeans, potato plus corn. Argentina uses a huge amount of herbicides and genetically modified crops, Pasman said, adding that his farm was one of the first to produce Roundup Ready¼ soybean seeds in 1994. A View from Agricultural Producers “The cornerstone of our production technology is no-till,” Pasman said, a technique used on the entire farm except the potato fields, which follow a rotation of one year of potatoes followed by three years of no-till. A corn crop follows the potato harvest in the same year. No-till improves water infiltration and water retention and reduces evaporation because the previous crops’ residue minimizes runoff and allows the soil to retain more water. No-till also reduces erosion risk and increases organic matter, improving oxidation and carbon circulation in the soil. It improves soil fertility, increases productivity and sustainability, and allows farming in difficult soils, particularly shallow soils of 3 inches. No-till uses less than half the water and less labor compared to conventional tillage, reducing production costs by 30 percent, Pasman concluded. “It is very important, the mix of no tillage with center pivot (irrigation) against traditional management.

    Chapter 4- Human Dimensions of Water for Food Production

    Get PDF
    Feeding 9 Billion and Maintaining the Planet: Meeting the Challenge of 2050 Environmental concerns, which fall outside normal market powers, require special incentives and consideration in water resource decisions, Marty Matlock said. Given that the world’s population now consumes past the point of sustainability, should sustainability be a market choice for consumers? “This should be pre-competitive,” Matlock said. “The consumers should have confidence that everything they buy complies with a certain threshold of humanity, of behavior, of ethics and sustainability.” The market has the power to move materials, goods and services from areas of plenty to those of scarcity. The problem is that the market is not responding to water scarcity, in part because crops are grown where there is no water. For example, in Brazil, areas that once were rainforest now grow 2.4 crops annually for export to China. “They’re exporting de facto water to China,” Matlock said. Another example stems from the 1 billion people who lack access to water and the 2.4 billion who don’t have basic sanitation. Every day, waterborne diseases kill 5,400 children. “That’s the cost of this failure of technology – failure of civilizations,” Matlock said. “It’s a pretty dramatic cost.” Global climate change will increase water scarcity in already water-stressed areas. Although agriculture no longer accounts for 90 percent of global water use, as it did in 1900, agricultural water use has increased fivefold since then. Competing with other sectors for limited water affects the many other uses that are not monetized, such as biodiversity. The Colorado and Ganges rivers offer examples of dramatic decreases in water discharge due to overallocation. Peak flows have not changed, but critical base flows have dropped considerably over time. “It’s hard to have a functional, viable aquatic ecosystem without the aquatic,” Matlock said. Rice, which accounts for 15 percent of human water use, presents another problem. But improvement is possible, Matlock said. Human Dimensions of Water for Food Production Anheuser-Busch InBev, for example, achieved 4.7 percent per-unit reductions in rice culture, saving 3.5 billion liters of water in five years. Water intake is only one issue; equally important is water effluent. From an ecological standpoint, given grossly limited incentive funding, Matlock believes profitable production practices should not be incentivized. “If you already have an incentive for conserving water − reducing soil erosion − then we don’t need to give you more money to do that which you ought to be doing anyway, because the marketplace will weed you out if you don’t perform,” he said. “It’s the things that we don’t incentivize, like preservation of riparian zones, that we should perhaps be incentivizing with our limited resources.” The Mesoamerican Barrier Reef System offers an example of the interconnectedness of agriculture effluent and environmental harm. Pollutants, particularly sediment and nutrients carried downstream from plantations to the Caribbean Sea, have the equivalent effect of a 10-degree temperature change, bleaching the coral reefs. Impacts that are acceptable with 6.7 billion people will not be with 9 billion, Matlock concluded. If management happens only to things that are measured, and not everything can be measured, which metrics are important and how can they be incentivized? “We have to shift our thinking from maximizing any one variable or metric to optimizing several key ones.

    Appendix- Water for Food conference proceedings

    Get PDF
    Poster Competition, Conference Participants, and Photos Technologies and Advances in Water Management Human Dimensions of Water for Food Production Genetics and Physiology of Crop Water Other Conference Participants (148-153) Photos (154-160

    Chapter 6- A View from Agricultural Producers

    Get PDF
    Rainfed and Irrigated Production in Argentina Martin Pasman, an Argentine agronomist with a master’s degree in business administration, began his career as a consultant to farmers and has experience in Argentina, Uruguay, Paraguay and Brazil, where he was instrumental in helping to develop 80,000 hectares in the western part of the Cerrado area. His farming experience stems from his family’s farms, located in five areas of Argentina. Most are rainfed, but one area receives less than 500 millimeters of rain annually. Pasman also runs an irrigation business serving 80 percent of the Argentine market, giving him vast experience in developing irrigated land. Argentina is the second-largest South American country after Brazil and is one-third the size of the U.S. One-third of Argentina receives more than 800 millimeters of rain and depends upon rainfed agriculture, while the majority receives less than 800 millimeters. Argentina cultivates 30 million hectares per year, of which 2.2 million are irrigated. Total production output is 90 million metric tons, and about 70 percent of farmers in Argentina practice no-till agriculture. Pasman’s family came to Argentina from the U.S. around 1825, when it was primarily cattle country. His family brought the first Aberdeen Angus bull to Argentina and also helped develop agriculture. In the 1970s, the family farmed 6,000 hectares, of which only 500 were used for crops, yielding 3.5 tons of corn per hectare and 1.5 tons of wheat per hectare. They plowed the land and used few herbicides and no fertilizers. The majority of the land was used to raise 3,000 head of cattle, which were finished in natural pastures. Today, the family’s farm operation has expanded to 20,000 hectares, 15,000 of them used for agriculture. In the low-productivity land, they also manage 9,000 head of cattle in cow-calf operations, finishing the animals in American style feedlots. In rainfed fields, the Pasmans produce 8 tons of corn per hectare and 3 tons of wheat; under irrigation, they get 12 tons of corn and 6 tons of wheat. The most important crop, however, is soybeans. They also grow potatoes, corn and sunflower seeds for Monsanto Company. The farm uses 42 pivots to irrigate 4,000 hectares, and about 80 percent of the farm is double-cropped: wheat plus soybeans, seed corn plus soybeans, potato plus corn. Argentina uses a huge amount of herbicides and genetically modified crops, Pasman said, adding that his farm was one of the first to produce Roundup Ready¼ soybean seeds in 1994. A View from Agricultural Producers “The cornerstone of our production technology is no-till,” Pasman said, a technique used on the entire farm except the potato fields, which follow a rotation of one year of potatoes followed by three years of no-till. A corn crop follows the potato harvest in the same year. No-till improves water infiltration and water retention and reduces evaporation because the previous crops’ residue minimizes runoff and allows the soil to retain more water. No-till also reduces erosion risk and increases organic matter, improving oxidation and carbon circulation in the soil. It improves soil fertility, increases productivity and sustainability, and allows farming in difficult soils, particularly shallow soils of 3 inches. No-till uses less than half the water and less labor compared to conventional tillage, reducing production costs by 30 percent, Pasman concluded. “It is very important, the mix of no tillage with center pivot (irrigation) against traditional management.

    Optical-fiber source of polarization-entangled photon pairs in the 1550nm telecom band

    Full text link
    We present a fiber based source of polarization-entangled photon pairs that is well suited for quantum communication applications in the 1550nm band of standard fiber-optic telecommunications. Polarization entanglement is created by pumping a nonlinear-fiber Sagnac interferometer with two time-delayed orthogonally-polarized pump pulses and subsequently removing the time distinguishability by passing the parametrically scattered signal-idler photon pairs through a piece of birefringent fiber. Coincidence detection of the signal-idler photons yields biphoton interference with visibility greater than 90%, while no interference is observed in direct detection of either the signal or the idler photons. All four Bell states can be prepared with our setup and we demonstrate violations of CHSH form of Bell's inequalities by up to 10 standard deviations of measurement uncertainty.Comment: 12 pages, 4 figures, to be submitted to Phys. Rev. Lett. See also paper QTuB4 in QELS'03 Technical Digest (OSA, Washington, D.C., 2003). This is a more complete versio

    α-Adrenergic inhibition of proliferation in HepG2 cells stably transfected with the α1B-adrenergic receptor through a p42MAP kinase/p21Cip1/WAF1-dependent pathway

    Get PDF
    AbstractActivation of α1B adrenergic receptors (α1BAR) promotes DNA synthesis in primary cultures of hepatocytes, yet expression of α1BAR in hepatocytes rapidly declines during proliferative events. HepG2 human hepatoma cells, which do not express α1BAR, were stably transfected with a rat α1BAR cDNA (TFG2 cells), in order to study the effects of maintained α1BAR expression on hepatoma cell proliferation. TFG2 cells had a decreased rate of growth compared to mock transfected HepG2 cells as revealed by a decrease in [3H]thymidine incorporation into DNA. Stimulation of α1BAR with phenylephrine caused a further large reduction in TFG2 cell growth, whereas no effect on growth was observed in mock transfected cells. Reduced cell growth correlated with increased percentages of cells found in G0/G1 and G2/M phases of the cell cycle. In TFG2 cells, phenylephrine increased p42MAP kinase activity by 1.5- to 2.0-fold for up to 24 h and increased expression of the cyclin dependent kinase inhibitor protein p21Cip1/WAF1. Treatment of TFG2 cells with the specific MEK1 inhibitor PD98059, or infection with a −/− MEK1 recombinant adenovirus permitted phenylephrine to increase rather than decrease [3H]thymidine incorporation. In addition, inhibition of MAP kinase signaling by PD98059 or MEK1 −/− blunted the ability of phenylephrine to increase p21Cip1/WAF1 expression. In agreement with a role for increased p21Cip1/WAF1 expression in causing growth arrest, infection of TFG2 cells with a recombinant adenovirus to express antisense p21Cip1/WAF1 mRNA blocked the ability of phenylephrine to increase p21Cip1/WAF1 expression and to inhibit DNA synthesis. Antisense p21Cip1/WAF1 permitted phenylephrine to stimulate DNA synthesis in TFG2 cells, and abrogated growth arrest. These results suggest that transformed hepatocytes may turn off the expression of α1BARs in order to prevent the activation of a growth inhibitory pathway. Activation of this inhibitory pathway via α1BAR appears to be p42MAP kinase and p21Cip1/WAF1 dependent
    • 

    corecore