20 research outputs found

    Overexpression of Na ؉ -Dependent Myo-inositol Transporter Gene in Mouse Lens Led to Congenital Cataract

    Get PDF
    PURPOSE. Maintaining appropriate osmotic pressure is essential for maintaining lens transparency. This study was performed to investigate whether high levels of myo-inositol, one of the major organic osmolytes in the lens, would lead to cataract development. METHODS. Transgenic mouse lines carrying the bovine Na ϩ -dependent myo-inositol transporter (bSMIT) cDNA under the control of the mouse ␣A-crystallin promoter were generated. RESULTS. Increased bSMIT expression was accompanied by increased myo-inositol level in the lens and increased uptake of ( 3 H) myo-inositol by the lens in culture. The transgenic mice developed observable cataract under normal rearing conditions beginning at 2 to 8 weeks of age, and the severity of cataract development was correlated to the level of bSMIT gene expression and lens myo-inositol accumulation. For transgenic mouse line 3352, heterozygous mice did not develop cataract, whereas homozygous ones did. Prenatal feeding of heterozygous 3352 mice with high myo-inositol diet led to cataract development, indicating that cataract development was not merely due to a nonspecific effect of SMIT overexpression. Introducing aldose reductase overexpressing transgene into heterozygous 3352 mice also led to cataract development, indicating that this type of cataract is primarily due to osmotic stress. CONCLUSIONS. The present results indicate that high levels of myo-inositol and sorbitol in the lens contribute to cataract development. This is a useful model to study the role of osmotic stress in cataractogenesis during lens development. (Invest Ophthalmol Vis Sci. 2000;41:1467-1472 C ataract is the most important cause of blindness in the world. Nearly 16 million people are estimated to be blind because of cataract. 1 There are a number of causes for cataract, including congenital cataract, cataract from infection, cataract from UV and X-ray irradiation and oxidation damage, and cataract associated with several diseases, particularly diabetes. The transparency in mammalian lenses is due to the presence of crystallin structures formed by highly ordered association of several proteins. Changes in ionic environment, a reduction in the level of antioxidants such as reduced glutathione and ascorbic acid, and changes in the level of other solutes may lead to random protein aggregation and disruption of the crystallin structures, resulting in lens opacity and cataract. Therefore, the lens needs to stabilize the intracellular osmotic pressure by regulating the influx and efflux of water, osmolytes, and other solutes. Osmotic stress due to the accumulation of sorbitol in the lens is most likely the cause of diabetic cataract. This is based on the fact that sorbitol accumulates to high levels in the lenses of diabetic animals 6 Development of lens opacity in vitro can be prevented by AR inhibitors or if the medium is made hypertonic to balance the increased sorbitol accumulation in the lens, indicating that osmotic stress is the cause of diabetic cataract. 9 To determine whether cataract caused by sorbitol accumulation is a consequence of osmotic stress rather than the toxic effect of sorbitol, we wanted to increase the lens myoinositol (MI) level to see if that also causes cataract. Myoinositol is one of the three major osmolytes in the lens besides sorbitol and taurine. 10 Influx of MI into lens is dependent on the Na ϩ -dependent MI transporter (SMIT). 11 In this study, we produced transgenic mice that overexpress SMIT constitutively in lens cells and found that they developed congenital cataract under normal rearing condition beginning at 2 to 8 weeks of age. These results provide strong evidence that a high level o

    The Short-Lived Signaling State of the Photoactive Yellow Protein Photoreceptor Revealed by Combined Structural Probes

    Get PDF
    The signaling state of the photoactive yellow protein (PYP) photoreceptor is transiently developed via isomerization of its blue-light-absorbing chromophore. The associated structural rearrangements have large amplitude but, due to its transient nature and chemical exchange reactions that complicate NMR detection, its accurate three-dimensional structure in solution has been elusive. Here we report on direct structural observation of the transient signaling state by combining double electron electron resonance spectroscopy (DEER), NMR, and time-resolved pump-probe X-ray solution scattering (TR-SAXS/WAXS). Measurement of distance distributions for doubly spin-labeled photoreceptor constructs using DEER spectroscopy suggests that the signaling state is well ordered and shows that interspin-label distances change reversibly up to 19 Å upon illumination. The SAXS/WAXS difference signal for the signaling state relative to the ground state indicates the transient formation of an ordered and rearranged conformation, which has an increased radius of gyration, an increased maximum dimension, and a reduced excluded volume. Dynamical annealing calculations using the DEER derived long-range distance restraints in combination with short-range distance information from (1)H-(15)N HSQC perturbation spectroscopy give strong indication for a rearrangement that places part of the N-terminal domain in contact with the exposed chromophore binding cleft while the terminal residues extend away from the core. Time-resolved global structural information from pump-probe TR-SAXS/WAXS data supports this conformation and allows subsequent structural refinement that includes the combined energy terms from DEER, NMR, and SAXS/WAXS together. The resulting ensemble simultaneously satisfies all restraints, and the inclusion of TR-SAXS/WAXS effectively reduces the uncertainty arising from the possible spin-label orientations. The observations are essentially compatible with reduced folding of the I(2)' state (also referred to as the 'pB' state) that is widely reported, but indicates it to be relatively ordered and rearranged. Furthermore, there is direct evidence for the repositioning of the N-terminal region in the I(2)' state, which is structurally modeled by dynamical annealing and refinement calculations

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Proprietary interest category: N. Reprint requests: Dr. Patrick R. Cammarata, Department of Anatomy and Cell Biology

    No full text
    Purpose. Bovine lens epithelial cells (BLECs) accumulate osmotically active organic solutes (i.e., osmolytes) including myo-inositol when exposed to hypertonic stress (osmotic shock). In hypertonic medium, the increase in myo-inositol accumulation is attributed to an elevation in activity of Na + /myo-inositol cotransporter(s). The authors report the nature of the hypertonicity-induced enhancement of myo-inositol uptake in cultured BLECs by amplifying a 626 bp cDNA from lens cell RNA. Methods. A portion of cDNA encoding a Na + /myo-inositol cotransporter was isolated from cultured BLECs using PCR primers designed from an established myo-inositol transporter from Madin-Darby canine kidney (MDCK) cells. Using the reverse transcription-polymerase chain reaction, a 626 bp PCR product was amplified. Its nucleic acid sequence was determined by the dideoxynucleotide method using Sequenase kit. Na + /Myo-inositol cotransporter mRNA expression in the cultured cells was demonstrated under physiological and hypertonic conditions by northern analysis of poly (A) + RNA using the lens cell 626 bp cDNA as probe. Results. The BLEC cDNA sequence was 92% identical with the Na + /myo-inositol cotransporter of MDCK cells. Myo-inositol transporter mRNA was demonstrated in cultured BLECs and was significantly induced by hypertonic stress. Conclusions. These data suggest that cultured bovine lens epithelial cell adaptation to hypertonicity involves intracellular accumulation of small organic osmolytes (i.e., myo-inositol) through elevation of myo-inositol uptake activity resulting from the upregulation of transporter mRNA. Invest Ophthalmol Vis Sci. 1994; 35:1236-1242 .Little is known about the osmoregulatory role of organic osmolytes (including myo-inositol) under normal, hyperglycemic, and hypertonic conditions in lens cells. Many cells, including bovine lens epithelial cells, accumulate small organic osmolytes in adaptation to water stress in hypertonic environments
    corecore