115 research outputs found

    T-bet, but not Gata3, overexpression is detrimental in a neurotropic viral infection

    Get PDF
    Intracerebral Theiler’s murine encephalomyelitis virus (TMEV) infection in mice induces inflammatory demyelination in the central nervous system. Although C57BL/6 mice normally resistant to TMEV infection with viral clearance, we have previously demonstrated that RORγt-transgenic (tg) C57BL/6 mice, which have Th17-biased responses due to RORγt overexpression in T cells, became susceptible to TMEV infection with viral persistence. Here, using T-bet-tg C57BL/6 mice and Gata3-tg C57BL/6 mice, we demonstrated that overexpression of T-bet, but not Gata3, in T cells was detrimental in TMEV infection. Unexpectedly, T-bet-tg mice died 2 to 3 weeks after infection due to failure of viral clearance. Here, TMEV infection induced splenic T cell depletion, which was associated with lower anti-viral antibody and T cell responses. In contrast, Gata3-tg mice remained resistant, while Gata3-tg mice had lower IFN-γ and higher IL-4 production with increased anti-viral IgG1 responses. Thus, our data identify how overexpression of T-bet and Gata3 in T cells alters anti-viral immunity and confers susceptibility to TMEV infection

    Myocardial structural and functional changes in patients with liver cirrhosis awaiting liver transplantation: a comprehensive cardiovascular magnetic resonance and echocardiographic study

    Get PDF
    Background Cardiac dysfunction is increasingly recognized in patients with liver cirrhosis. Nevertheless, the presence or absence of structural alterations such as diffuse myocardial fibrosis remains unclear. We aimed to investigate myocardial structural changes in cirrhosis, and explore left ventricular (LV) structural and functional changes induced by liver transplantation. Methods This study included 33 cirrhosis patients listed for transplantation and 20 healthy controls. Patients underwent speckle-tracking echocardiography and cardiovascular magnetic resonance (CMR) with extracellular volume fraction (ECV) quantification at baseline (n = 33) and 1 year after transplantation (n = 19). Results CMR-based LV ejection fraction (CMRLV-EF) and echocardiographic LV global longitudinal strain (LV-GLS) demonstrated hyper-contractile LV in cirrhosis patients (CMRLV-EF: 67.8 ± 6.9% in cirrhosis vs 63.4 ± 6.4% in healthy controls, P = 0.027; echocardiographic GLS: − 24.2 ± 2.7% in cirrhosis vs − 18.6 ± 2.2% in healthy controls, P  0.1). Only one of the cirrhosis patients showed late gadolinium enhancement. However, cirrhosis patients showed a higher ECV (31.6 ± 5.1% vs 25.4 ± 1.9%, P < 0.001) than healthy controls. ECV showed a positive correlation with Child-Pugh score (r = 0.564, P = 0.001). Electrocardiogram-based corrected QT interval was prolonged in cirrhosis (P < 0.001). One-year post-transplantation, echocardiographic LV-GLS (from − 24.9 ± 2.4% to − 20.6 ± 3.4%, P < 0.001) and ECV (from 30.9 ± 4.5% to 25.4 ± 2.6%, P = 0.001) moved to the normal ranges. Corrected QT interval decreased after transplantation (from 475 ± 41 to 429 ± 30 msec, P = 0.001). Conclusions Myocardial extracellular volume expansion with augmented resting LV systolic function was characteristic of cirrhotic cardiomyopathy, which normalizes 1-year post-transplantation. Thus, myocardial extracellular expansion represents a structural component of myocardial changes in cirrhosis.This study was supported by the grant of CJ healthcare 2016 research fund

    Bioinformatics Analyses Determined the Distinct CNS and Peripheral Surrogate Biomarker Candidates Between Two Mouse Models for Progressive Multiple Sclerosis

    Get PDF
    Previously, we have established two distinct progressive multiple sclerosis (MS) models by induction of experimental autoimmune encephalomyelitis (EAE) with myelin oligodendrocyte glycoprotein (MOG) in two mouse strains. A.SW mice develop ataxia with antibody deposition, but no T cell infiltration, in the central nervous system (CNS), while SJL/J mice develop paralysis with CNS T cell infiltration. In this study, we determined biomarkers contributing to the homogeneity and heterogeneity of two models. Using the CNS and spleen microarray transcriptome and cytokine data, we conducted computational analyses. We identified up-regulation of immune-related genes, including immunoglobulins, in the CNS of both models. Pro-inflammatory cytokines, interferon (IFN)-γ and interleukin (IL)-17, were associated with the disease progression in SJL/J mice, while the expression of both cytokines was detected only at the EAE onset in A.SW mice. Principal component analysis (PCA) of CNS transcriptome data demonstrated that down-regulation of prolactin may reflect disease progression. Pattern matching analysis of spleen transcriptome with CNS PCA identified 333 splenic surrogate markers, including Stfa2l1, which reflected the changes in the CNS. Among them, we found that two genes (PER1/MIR6883 and FKBP5) and one gene (SLC16A1/MCT1) were also significantly up-regulated and down-regulated, respectively, in human MS peripheral blood, using data mining

    Attenuation of Rheumatoid Inflammation by Sodium Butyrate Through Reciprocal Targeting of HDAC2 in Osteoclasts and HDAC8 in T Cells

    Get PDF
    Rheumatoid arthritis (RA) is a systemic autoimmune disease caused by both genetic and environmental factors. Recently, investigators have focused on the gut microbiota, which is thought to be an environmental factor that affects the development of RA. Metabolites secreted by the gut microbiota maintain homeostasis in the gut through various mechanisms [e.g., butyrate, which is one of the major metabolites of gut microbiota, exerts an anti-inflammatory effect by activating G-protein-coupled receptors and inhibiting histone deacetylases (HDACs)]. Here, we focused on the inhibition of the HDACs by butyrate in RA. To this end, we evaluated the therapeutic effects of butyrate in an animal model of autoimmune arthritis. The arthritis score and incidence were lower in the butyrate-treated group compared to the control group. Also, butyrate inhibited HDAC2 in osteoclasts and HDAC8 in T cells, leading to the acetylation of glucocorticoid receptors and estrogen-related receptors α, respectively. Additionally, control of the TH17/Treg cell balance and inhibition of osteoclastogenesis were confirmed by the changes in target gene expression. Interleukin-10 (IL-10) produced by butyrate-induced expanded Treg cells was critical, as treatment with butyrate did not affect inflammatory arthritis in IL-10-knockout mice. This immune-cell regulation of butyrate was also detected in humans. These findings suggest that butyrate is a candidate agent for the treatment of RA

    Molecular diagnosis of hereditary spherocytosis by multi-gene target sequencing in Korea: matching with osmotic fragility test and presence of spherocyte

    Get PDF
    Background Current diagnostic tests for hereditary spherocytosis (HS) focus on the detection of hemolysis or indirectly assessing defects of membrane protein, whereas direct methods to detect protein defects are complicated and difficult to implement. In the present study, we investigated the patterns of genetic variation associated with HS among patients clinically diagnosed with HS. Methods Multi-gene targeted sequencing of 43 genes (17 RBC membrane protein-encoding genes, 20 RBC enzyme-encoding genes, and six additional genes for the differential diagnosis) was performed using the Illumina HiSeq platform. Results Among 59 patients with HS, 50 (84.7%) had one or more significant variants in a RBC membrane protein-encoding genes. A total of 54 significant variants including 46 novel mutations were detected in six RBC membrane protein-encoding genes, with the highest number of variants found in SPTB (n = 28), and followed by ANK1 (n = 19), SLC4A1 (n = 3), SPTA1 (n = 2), EPB41 (n = 1), and EPB42 (n = 1). Concurrent mutations of genes encoding RBC enzymes (ALDOB, GAPDH, and GSR) were detected in three patients. UGT1A1 mutations were present in 24 patients (40.7%). Positive rate of osmotic fragility test was 86.8% among patients harboring HS-related gene mutations. Conclusions This constitutes the first large-scaled genetic study of Korean patients with HS. We demonstrated that multi-gene target sequencing is sensitive and feasible that can be used as a powerful tool for diagnosing HS. Considering the discrepancies of clinical and molecular diagnoses of HS, our findings suggest that molecular genetic analysis is required for accurate diagnosis of HS.Support was provided by: the National Research Foundation of Korea (NRF) grant funded by the Korea government(MSIT) (NRF-2017R1A2A1A17069780) http://www.nrf.re.kr/

    Black Cohosh and St. John's Wort (GYNO-Plus®) for Climacteric Symptoms

    Get PDF
    PURPOSE: This study was conducted to investigate the efficacy of black cohosh (Cimicifuga racemosa) and St. John's wort (Hypericum perforatum) in women with climacteric symptoms, and to assess their effects on vaginal atrophy, hormone levels, and lipid profiles. MATERIALS AND METHODS: In this double-blind randomized, placebo-controlled, multicenter study, 89 peri- or postmenopausal women experiencing climacteric symptoms were treated with St. John's wort and black cohosh extract (Gynoplus), Jin-Yang Pharm., Seoul, Korea) or a matched placebo for 12 weeks. Climacteric complaints were evaluated by the Kupperman Index (KI) initially and at 4 and 12 weeks following treatment. Vaginal maturation indices, serum estradiol, FSH, LH, total cholesterol, HDL- cholesterol, LDL-cholesterol, and triglyceride levels were measured before and after treatment. From the initial 89 participants, 77 completed the trial (42 in the Gynoplus group, 35 in the placebo group). RESULTS: Baseline characteristics were not significantly different between the two groups. Mean KI scores and hot flushes after 4 and 12 weeks were significantly lower in the Gynoplus group. Differences in superficial cell proportion were not statistically significant. HDL levels decreased in the control group from 60.20 +/- 16.37 to 56.63 +/- 12.67, and increased in the Gynoplus group from 58.32 +/- 11.64 to 59.74 +/- 10.54; this was statistically significant (p=0.04). CONCLUSION: Black cohosh and St. John's wort combination was found to be effective in alleviating climacteric symptoms and might provide benefits to lipid metabolismope

    A new class of glycomimetic drugs to prevent free fatty acid-induced endothelial dysfunction

    Get PDF
    Background: Carbohydrates play a major role in cell signaling in many biological processes. We have developed a set of glycomimetic drugs that mimic the structure of carbohydrates and represent a novel source of therapeutics for endothelial dysfunction, a key initiating factor in cardiovascular complications. Purpose: Our objective was to determine the protective effects of small molecule glycomimetics against free fatty acid­induced endothelial dysfunction, focusing on nitric oxide (NO) and oxidative stress pathways. Methods: Four glycomimetics were synthesized by the stepwise transformation of 2,5­dihydroxybenzoic acid to a range of 2,5­substituted benzoic acid derivatives, incorporating the key sulfate groups to mimic the interactions of heparan sulfate. Endothelial function was assessed using acetylcholine­induced, endotheliumdependent relaxation in mouse thoracic aortic rings using wire myography. Human umbilical vein endothelial cell (HUVEC) behavior was evaluated in the presence or absence of the free fatty acid, palmitate, with or without glycomimetics (1µM). DAF­2 and H2DCF­DA assays were used to determine nitric oxide (NO) and reactive oxygen species (ROS) production, respectively. Lipid peroxidation colorimetric and antioxidant enzyme activity assays were also carried out. RT­PCR and western blotting were utilized to measure Akt, eNOS, Nrf­2, NQO­1 and HO­1 expression. Results: Ex vivo endothelium­dependent relaxation was significantly improved by the glycomimetics under palmitate­induced oxidative stress. In vitro studies showed that the glycomimetics protected HUVECs against the palmitate­induced oxidative stress and enhanced NO production. We demonstrate that the protective effects of pre­incubation with glycomimetics occurred via upregulation of Akt/eNOS signaling, activation of the Nrf2/ARE pathway, and suppression of ROS­induced lipid peroxidation. Conclusion: We have developed a novel set of small molecule glycomimetics that protect against free fatty acidinduced endothelial dysfunction and thus, represent a new category of therapeutic drugs to target endothelial damage, the first line of defense against cardiovascular disease

    Regulatory analysis of DNA methylation in pulmonary fibrosis

    Get PDF
    研究成果の概要(和文):肺線維化におけるDNAメチル化をはじめとしたエピジェネティックな変化を明らかにする目的で、シリカ投与による肺線維化モデルマウスを作成し、肺組織中のDNAメチル化の変化を検討した。DNAメチル化の量は正常マウスでも比較的高く、線維化肺での変化が認められなかった。しかし、DNAメチル化酵素の1つDNMT3Bが線維化肺で増加していた。同様のDNAメチル化酵素が線維化に重要な筋線維芽細胞でも増加していたことから、線維化においてDNMT3Bを介したメチル化が関与している可能性が示唆された。 研究成果の概要(英文): The object of this study is to clarify the epigenetic changes in pulmonary fibrosis. In vivo study using silica—induced mouse fibrosis model revealed that the DNA methylation level was unchanged, but the protein level of DNMT3Bw, hich catalysis DNA methylation, was increased in fibrosis lung. In vitro study also showed the increaseof this protein. The increase of DNMT3Bpr otein may play important role in pulmonary fibrosis.機関番号:34419; 研究種目:若手研究(B); 研究期間:2010~2012; 課題番号:22790772; 研究分野:医師薬学; 科研費の分科・細目:内科系臨床医学・呼吸器内科
    corecore