222 research outputs found

    Entering the black box of platform orchestration : a metaphoric co-evolutionary framework for platform-based ecosystems

    Get PDF
    International audienceSince the first empirical definition of business ecosystems (BEs), its central orchestration dynamic has been defined as co-evolutive. If the nature of the associated mechanisms is still debated, the co-evolutionary nature of inter-organizational innovation processes has been largely demonstrated. Platform-based ecosystems are characterized by a flexible and scalable architecture of cooperation designed to leverage collective intelligence. In such a context, platforms serve as a backbone for inter-organizational collaboration and facilitate interactions. But for a platform-based ecosystem to flourish inter-organizational coevolutionary processes have to be triggered. To better understand how platform-based ecosystems achieve such goal, an empirical and theoretical characterization of the associated co-evolutionary processes is of utmost importance. However, current analogical transpositions of co-evolutionary mechanisms from biology to strategic management are still disparate and partial. To leverage our understanding of co-evolutionary mechanisms involved in biological complex adaptive systems, the application of a metaphorical transposition is necessary. The metaphorical transposition of coevolutionary mechanisms in organizational sciences enables the distinction between several mechanisms: mimicry, co-adaptation, and 3 different forms of co-evolutive mutualisms. This distinction allows a better understanding of platforms coordination processes, thus opening the way for the empirical identification of specific generative mechanisms and their related triggering factors

    Мобильные установки для ручной и механизированной лазерной сварки и обработки металлов (Обзор)

    Get PDF
    Представлен обзор мобильных установок для ручной и механизированной лазерной сварки и обработки конструкционных металлов. Даны описания и краткие технические характеристики установки для очистки металлических поверхностей от краски и других загрязнений, переносных аппаратов для механизированной лазерной сварки стыковых и нахлесточных соединений, установки дл лазерной обработки и наплавки.The paper presents a review of mobile units for manual and mechanized laser welding and treatment of metals. Description and brief specification of a unit for cleaning metallic surfaces from paint and other contamination, portable units for mechanized laser welding of butt and overlap joints and of a laser surfacing unit are given

    Gene Capture Coupled to High-Throughput Sequencing as a Strategy for Targeted Metagenome Exploration

    Get PDF
    International audienceNext-generation sequencing (NGS) allows faster acquisition of metagenomic data, but complete exploration of complex ecosystems is hindered by the extraordinary diversity of microorganisms. To reduce the environmental complexity, we created an innovative solution hybrid selection (SHS) method that is combined with NGS to characterize large DNA fragments harbouring biomarkers of interest. The quality of enrichment was evaluated after fragments containing the methyl coenzyme M reductase subunit A gene (mcrA), the biomarker of methanogenesis, were captured from a Methanosarcina strain and a metagenomic sample from a meromictic lake. The methanogen diversity was compared with direct metagenome and mcrA-based amplicon pyrosequencing strategies. The SHS approach resulted in the capture of DNA fragments up to 2.5 kb with an enrichment efficiency between 41 and 100%, depending on the sample complexity. Compared with direct metagenome and amplicons sequencing, SHS detected broader mcrA diversity, and it allowed efficient sampling of the rare biosphere and unknown sequences. In contrast to amplicon-based strategies, SHS is less biased and GC independent, and it recovered complete biomarker sequences in addition to conserved regions. Because this method can also isolate the regions flanking the target sequences, it could facilitate operon reconstructions

    Increased Prevalence of Alloimmunization in Sickle Cell Disease? Should We Restore Blood Donation in French Guiana?

    Get PDF
    Patients with sickle cell disease often undergo frequent blood transfusions. This increases their exposure to red blood cell alloantigens of donor units, thus making it more likely that they produce alloantibodies. This cross-sectional study aimed to describe the prevalence of allo-immunization in patients with sickle cell disease who were monitored at Cayenne Hospital in 2016. Of the 451 patients recruited during the study period, 238 (52.8%) were female. There were 262 (58.1%) homozygous sickle cell and 151 (33.5%) compound heterozygous sickle cell patients. The median age of the participants was 23.09 years (range, 0.5–68). We noted different red blood cell extended phenotypes: -in the Duffy system, the Fya- Fyb–profile was found in 299 patients (66%);—for the Kidd system, the most represented profile was Jka+ Jkb-, with 213 patients (47%). The Jka antigen was present in 355 patients;—in the MNS system, the S-s+ profile was found in 297 patients (66%);—the Lea antigen of the Lewis system was absent in 319 patients. The most frequent Rh phenotype in our patients was D+ C- E- c+ e+ K-, representing 51% of the patients. A total of 6,834 transfused packed red blood cell units were recorded. Sixty-eight patients (23%; 95% confidence interval, 20–25%) had detectable RBC alloantibodies. In multivariate logistic regression, only the mean number of single transfusions was statistically higher for the alloimmunized patients (p < 0.04). Thirteen (19%) of the patients with alloimmunization developed a delayed hemolytic transfusion reaction, thus representing 4.4% of the total number of transfused patients. Whether differences between donors from France vs. recipients from French Guiana could explain this high prevalence of alloimmunization to be examined. In conclusion, careful transfusion strategies for patients with RBC alloantibodies should allow further reduction of the rate of alloimmunization

    Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine

    Get PDF
    BACKGROUND: A seventh order of methanogens, the Methanomassiliicoccales, has been identified in diverse anaerobic environments including the gastrointestinal tracts (GIT) of humans and other animals and may contribute significantly to methane emission and global warming. Methanomassiliicoccales are phylogenetically distant from all other orders of methanogens and belong to a large evolutionary branch composed by lineages of non-methanogenic archaea such as Thermoplasmatales, the Deep Hydrothermal Vent Euryarchaeota-2 (DHVE-2, Aciduliprofundum boonei) and the Marine Group-II (MG-II). To better understand this new order and its relationship to other archaea, we manually curated and extensively compared the genome sequences of three Methanomassiliicoccales representatives derived from human GIT microbiota, “Candidatus Methanomethylophilus alvus", “Candidatus Methanomassiliicoccus intestinalis” and Methanomassiliicoccus luminyensis. RESULTS: Comparative analyses revealed atypical features, such as the scattering of the ribosomal RNA genes in the genome and the absence of eukaryotic-like histone gene otherwise present in most of Euryarchaeota genomes. Previously identified in Thermoplasmatales genomes, these features are presently extended to several completely sequenced genomes of this large evolutionary branch, including MG-II and DHVE2. The three Methanomassiliicoccales genomes share a unique composition of genes involved in energy conservation suggesting an original combination of two main energy conservation processes previously described in other methanogens. They also display substantial differences with each other, such as their codon usage, the nature and origin of their CRISPRs systems and the genes possibly involved in particular environmental adaptations. The genome of M. luminyensis encodes several features to thrive in soil and sediment conditions suggesting its larger environmental distribution than GIT. Conversely, “Ca. M. alvus” and “Ca. M. intestinalis” do not present these features and could be more restricted and specialized on GIT. Prediction of the amber codon usage, either as a termination signal of translation or coding for pyrrolysine revealed contrasted patterns among the three genomes and suggests a different handling of the Pyl-encoding capacity. CONCLUSIONS: This study represents the first insights into the genomic organization and metabolic traits of the seventh order of methanogens. It suggests contrasted evolutionary history among the three analyzed Methanomassiliicoccales representatives and provides information on conserved characteristics among the overall methanogens and among Thermoplasmat

    Disruption of phenylalanine hydroxylase reduces adult lifespan and fecundity, and impairs embryonic development in parthenogenetic pea aphids

    Get PDF
    International audiencePhenylalanine hydroxylase (PAH) is a key tyrosine-biosynthetic enzyme involved in neurological and melanin-associated physiological processes. Despite extensive investigations in holometabolous insects, a PAH contribution to insect embryonic development has never been demonstrated. Here, we have characterized, for the first time, the PAH gene in a hemimetabolous insect, the aphid Acyrthosiphon pisum. Phylogenetic and sequence analyses confirmed that ApPAH is closely related to metazoan PAH, exhibiting the typical ACT regulatory and catalytic domains. Temporal expression patterns suggest that ApPAH has an important role in aphid developmental physiology, its mRNA levels peaking at the end of embryonic development. We used parental dsApPAH treatment to generate successful knockdown in aphid embryos and to study its developmental role. ApPAH inactivation shortens the adult aphid lifespan and considerably affects fecundity by diminishing the number of nymphs laid and impairing embryonic development, with newborn nymphs exhibiting severe morphological defects. Using single nymph HPLC analyses, we demonstrated a significant tyrosine deficiency and a consistent accumulation of the upstream tyrosine precursor, phenylalanine, in defective nymphs, thus confirming the RNAi-mediated disruption of PAH activity. This study provides first insights into the role of PAH in hemimetabolous insects and demonstrates that this metabolic gene is essential for insect embryonic development

    Bacteriocyte cell death in the pea aphid/ Buchnera symbiotic system

    Get PDF
    International audienceSymbiotic associations play a pivotal role in multicellular life by facilitating acquisition of new traits and expanding the ecological capabilities of organisms. In insects that are obligatorily dependent on intracellular bacterial symbionts, novel host cells (bacteriocytes) or organs (bacteriomes) have evolved for harboring beneficial microbial partners. The processes regulating the cellular life cycle of these endosymbiont-bearing cells, such as the cell-death mechanisms controlling their fate and elimination in response to host physiology, are fundamental questions in the biology of symbiosis. Here we report the discovery of a cell-death process involved in the degeneration of bacteriocytes in the hemipteran insect Acyrthosiphon pisum This process is activated progressively throughout aphid adulthood and exhibits morphological features distinct from known cell-death pathways. By combining electron microscopy, immunohistochemistry, and molecular analyses, we demonstrated that the initial event of bacteriocyte cell death is the cytoplasmic accumulation of nonautophagic vacuoles, followed by a sequence of cellular stress responses including the formation of autophagosomes in intervacuolar spaces, activation of reactive oxygen species, and Buchnera endosymbiont degradation by the lysosomal system. We showed that this multistep cell-death process originates from the endoplasmic reticulum, an organelle exhibiting a unique reticular network organization spread throughout the entire cytoplasm and surrounding Buchnera aphidicola endosymbionts. Our findings provide insights into the cellular and molecular processes that coordinate eukaryotic host and endosymbiont homeostasis and death in a symbiotic system and shed light on previously unknown aspects of bacteriocyte biological functioning
    corecore