586 research outputs found

    Transformaciones estructurales de las fibras para conferirles nuevas propiedades.

    Get PDF
    En este artículo, procuraremos definir los medios teóricos que pueden ser ideados para obtener el resultado deseado, tanto en lo que se refiere a las fibras naturales a las que se quiere hacer adquirir las propiedades de las fibras sintéticas, como a lo que hace referencia a las fibras «químicas» tradicionales a las que se quiere comunicar ciertas cualidades de las fibras naturales.Peer Reviewe

    Transformaciones estructurales de las fibras para conferirles nuevas propiedades (continuación).

    Get PDF
    En este artículo, procuraremos definir los medios teóricos que pueden ser ideados para obtener el resultado deseado, tanto en lo que se refiere a las fibras naturales a las que se quiere hacer adquirir las propiedades de las fibras sintéticas, como a lo que hace referencia a las fibras «químicas» tradicionales a las que se quiere comunicar ciertas cualidades de las fibras naturales.Peer Reviewe

    Relaciones entre la estructura química y las propiedades de las fibras artificiales y sintéticas.

    Get PDF
    Las macromoléculas se organizan en el espacio, en conglomerados más o menos ordenados según su propia estructura. Estos agregados tienen una morfología bastante parecida a la de la fibra, en particular una longitud que sobrepasa, bastante, sus otras dos dimensiones. Son las fibrillas. Según RIBI [Nature, 168, 1082 (1951)] la fibrilla elemental será un elemento de estructura general, a hallar en casi la totalidad de las fibras, cualesquiera que sea su origen, elemento que pueda originarse cuando las macromoléculas lineales, se ordenan en un enrejado. Si su longitud permanece indefinida e invariable, parece que su sección tengan unas dimensiones bastantes constantes de fibra a fibra, del orden de 70 a 110º A de largo. No se dispone de ningún dato en cuanto a las propiedades intrínsecas de las fibrillas, pues ningún medio ha podido ser puesto en práctica para efectuar medidas directas a tan pequeña escala. Debemos pues proceder «por comparaciones», haciendo variar por ejemplo la estructura interna de las fibrillas y examinando la variación de los parámetros mensurables de la fibra, o recíprocamente sometiendo la fibra a esfuerzos diversos y examinando cómo se modifica la estructura fibrilar.Peer Reviewe

    Relaciones entre la estructura química y las propiedades de las fibras artificiales y sintéticas.

    Get PDF
    Las operaciones de hilatura están destinadas a paralelizar las fibras en una cinta y a mantener la cohesión del conjunto mediante una torsión regular. La arquitectura final del hilo dependerá de la regularidad del paralelismo de las fibras, de la homogeneidad de distribución en longitud y en diámetro de las mismas, de que su forma natural sea rectilínea o no. Seguidamente, los hilos se convierten en tejidos o tricots, y la arquitectura del artículo se hace en extremo compleja.Peer Reviewe

    Prior-based Coregistration and Cosegmentation

    Get PDF
    We propose a modular and scalable framework for dense coregistration and cosegmentation with two key characteristics: first, we substitute ground truth data with the semantic map output of a classifier; second, we combine this output with population deformable registration to improve both alignment and segmentation. Our approach deforms all volumes towards consensus, taking into account image similarities and label consistency. Our pipeline can incorporate any classifier and similarity metric. Results on two datasets, containing annotations of challenging brain structures, demonstrate the potential of our method.Comment: The first two authors contributed equall

    Design of an ICRF Fast Matching System on Alcator C-Mod

    Get PDF

    Spectral Graph Convolutions for Population-based Disease Prediction

    Get PDF
    Exploiting the wealth of imaging and non-imaging information for disease prediction tasks requires models capable of representing, at the same time, individual features as well as data associations between subjects from potentially large populations. Graphs provide a natural framework for such tasks, yet previous graph-based approaches focus on pairwise similarities without modelling the subjects' individual characteristics and features. On the other hand, relying solely on subject-specific imaging feature vectors fails to model the interaction and similarity between subjects, which can reduce performance. In this paper, we introduce the novel concept of Graph Convolutional Networks (GCN) for brain analysis in populations, combining imaging and non-imaging data. We represent populations as a sparse graph where its vertices are associated with image-based feature vectors and the edges encode phenotypic information. This structure was used to train a GCN model on partially labelled graphs, aiming to infer the classes of unlabelled nodes from the node features and pairwise associations between subjects. We demonstrate the potential of the method on the challenging ADNI and ABIDE databases, as a proof of concept of the benefit from integrating contextual information in classification tasks. This has a clear impact on the quality of the predictions, leading to 69.5% accuracy for ABIDE (outperforming the current state of the art of 66.8%) and 77% for ADNI for prediction of MCI conversion, significantly outperforming standard linear classifiers where only individual features are considered.Comment: International Conference on Medical Image Computing and Computer-Assisted Interventions (MICCAI) 201

    Sawtooth period changes with mode conversion current drive on Alcator C-Mod

    Get PDF
    DEFC0299ER54512. Reproduction,  translation,  publication,  use and disposal,  in whole or in part,  by or for the United States government is permitted. Submitted for publication to Plasma Physics and Controlled Fusion. Sawtooth period changes with mode conversion current drive on Alcator C-Mo

    Latent Patient Network Learning for Automatic Diagnosis

    Full text link
    Recently, Graph Convolutional Networks (GCNs) has proven to be a powerful machine learning tool for Computer Aided Diagnosis (CADx) and disease prediction. A key component in these models is to build a population graph, where the graph adjacency matrix represents pair-wise patient similarities. Until now, the similarity metrics have been defined manually, usually based on meta-features like demographics or clinical scores. The definition of the metric, however, needs careful tuning, as GCNs are very sensitive to the graph structure. In this paper, we demonstrate for the first time in the CADx domain that it is possible to learn a single, optimal graph towards the GCN's downstream task of disease classification. To this end, we propose a novel, end-to-end trainable graph learning architecture for dynamic and localized graph pruning. Unlike commonly employed spectral GCN approaches, our GCN is spatial and inductive, and can thus infer previously unseen patients as well. We demonstrate significant classification improvements with our learned graph on two CADx problems in medicine. We further explain and visualize this result using an artificial dataset, underlining the importance of graph learning for more accurate and robust inference with GCNs in medical applications
    corecore