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Abstract.

Significant changes in the sawtooth period have been observed on the Alcator C-

Mod tokamak during phased ICRF operation in the mode conversion regime. As the

mode conversion layer was swept outward through the q = 1 surface in D(3He) plasmas,

the sawtooth period was found to increase and then decrease for counter-current drive

phasing. For co-current drive and heating phasings, it was observed to decrease and

then increase. With 2 MW ICRF power, the period varied from 3 to 12 ms. The

observed evolution is consistent with localized current drive by mode converted waves

in the vicinity of the q=1 surface. Simulations with the full wave code TORIC indicate

that the electron heating and current drive is due to mode converted Ion Cyclotron

Waves. The observed evolution for symmetric (heating) phasing is difficult to attribute

to localized heating, since temperature profile stiffness prohibits large changes in the

resistivity gradient at the q = 1 surface. An alternative explanation is found in TORIC

simulations, which predict co-current drive for symmetric phasing due to a strong up-

down asymmetry in the ICW wave field.

E-mail: parisot@mit.edu
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1. Introduction

In tokamak plasmas with multiple ion species, fast magnetosonic waves excited by

radiofrequency antennas in the Ion Cyclotron Range of Frequencies (ICRF) can mode

convert to shorter wavelength modes in the plasma core. The mode converted (MC)

waves damp in the immediate vicinity of the mode conversion region, which results in

strong localized absorption. The relative concentration of the ion species can be adjusted

so that the mode conversion region is well separated from the ion cyclotron layers. In this

regime cyclotron damping of the fast wave and MC waves becomes weaker and electron

Landau damping of the MC waves dominates. This mode conversion electron heating

(MCEH) scheme has been investigated in many tokamak experiments including TFTR

[Majeski 96], Tore-Supra [Saoutic 96], ASDEX-Upgrade [Noterdaeme 96], Alcator C-

Mod [Bonoli 97, Lin 03], and JET [Mantsinen 04]. It has proved to be an efficient

technique for localized electron heating. The heating location can be controlled by

changing the plasma composition or the toroidal magnetic field, and is predicted

accurately from the cold plasma dispersion relation of the fast wave in the zero electron

mass limit:

n2
⊥ = −

(R− n2
‖)(L− n2

‖)

S − n2
‖

where R, L and S are the dielectric tensor elements in the Stix notation [Stix 92]

and n⊥ = k⊥c/ω, n‖ = k‖c/ω are the refractive indexes perpendicular and parallel to

the magnetic field. The S = n2
‖ condition defines a resonance surface where n2

⊥ → ∞

and therefore possible mode conversion can occur [Swanson 85]. The peak electron

heating location was shown to be in good agreement with the midplane location of the

mode conversion layer S = n2
‖ in several MCEH experiments. The power deposition

profiles can be predicted using full wave numerical simulations. The models include

relevant thermal corrections in the cold plasma dielectric tensor and solve the wave

equation in either slab or toroidal geometries. Very good agreement with experimentally

measured profiles is generally obtained (see for example [Bonoli 97, Wright 04]). MECH

appears therefore as a relatively well understood electron heating scheme, with possible

applications to next-step tokamak devices. Experiments in TFTR [Wilson 98] showed

that MCEH scenarios can be used in reactor-relevant D-T plasmas, without density

limit constraints as in electron cyclotron or neutral beam heating.

Beyond electron heating, the strong interaction with electrons suggests other

possible applications like localized current drive and current profile control. The

possibility of mode conversion current drive (MCCD) has been demonstrated in TFTR

experiments [Majeski 96], however the physics and efficiency of this technique have not

been yet investigated in detail. Compared to MCEH, MCCD involves more complicated

aspects of mode conversion physics. This stems largely from two effects:

• The strong dependence of the current drive efficiency on the parallel wavenumber k‖,

particularly for low parallel phase velocity waves. In most MCEH scenarios, mode



Sawtooth period changes with mode conversion current drive on Alcator C-Mod 3

converted waves tend to damp with parallel phase velocities ω
k‖

close or below the

electron thermal speed, and therefore can interact strongly with trapped particles

or close to the trapped-passing boundary. This will reduce the efficiency depending

on the damping location and local k‖ spectrum.

• The evolution of k‖ in toroidal geometry [Ram 91]. This can be seen from the

approximate expression k‖ ≈
nφ

R
+ mθ

r
Bθ

B
, where nφ, mθ are toroidal and poloidal

mode numbers respectively and R, r is the local major and minor radius. While nφ
is conserved due to toroidal geometry, mθ can vary significantly as the perpendicular

wavenumber k⊥ changes rapidly in the mode conversion region. If the poloidal field

is sufficiently large, the mθ term can dominate and the initial spectrum imparted

by the antenna is partly lost.

As a result, the physics of MCCD involves detailed aspects of the mode conversion

process and is tied to the propagation characteristics of mode converted waves in toroidal

geometry.

This topic has been a major focus of the Alcator C-Mod ICRF program. Full

wave simulations in toroidal geometry with the full wave code TORIC [Brambilla 99,

Wright 04] have been compared with measured power deposition profiles [Lin 03] and

with wave-induced density fluctuations observed by Phase Contrast Imaging (PCI)

[Nelson-Melby 03, Lin 05]. Remarkable agreement with the code predictions has been

observed on both aspects. The code was able to reproduce the spatial structure and

radial spectrum of PCI signals associated with mode converted Ion Bernstein Waves

(MCIBW) and with Ion Cyclotron Waves (MCICW). While MCIBW are predicted by

slab models, the existence of MCICW in the core of toroidal plasmas is directly related

to poloidal-field induced upshifts in k‖ [Perkins 77, Faulconer 89, Parisot 05]. It has

been confirmed by numerical simulations in toroidal geometry [Jaeger 03, Wright 04]

and by the experimental observation of wave-induced density fluctuations by PCI signal

on the low field side of the ion-ion hybrid layer [Nelson-Melby 03], since MCIBW

cannot propagate there. Characteristic structures indicating poloidal asymmetries in

the MCICW wavefields were observed both in the simulations and experimental data,

which are associated with upshifts and downshifts in k‖. This gives good confidence that

the essential physics involved in MCCD is now accessible to modeling tools in the Ion

Cyclotron Range of Frequencies, and has motivated further MCCD studies on C-Mod,

based on TORIC predictions.

This paper reports on MCCD experiments where sawtooth period changes with

deposition close to the inversion radius are used as a means to infer localized current

drive. A similar approach was used by Bhatnagar et al. [Bhatnagar 94] to study Ion

Cyclotron Current Drive (ICCD). Initial experiments [Wukitch 05] in Alcator C-Mod

showed significant differences in the sawtooth period between co- and counter-current

drive phasings when the mode conversion layer was located just inside the inversion

radius. The period was shortened to 5 ms in co-CD phasing and lengthened to 15

ms in counter-CD phasing. Near axis deposition did not change the sawtooth period
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significantly, suggesting a localized effect. These initial results, together with more

recent studies on sawtooth period modeling [Porcelli 96, Graves 05], motivated the

experiment reported here, in which the mode conversion surface was swept through

the q=1 surface.

Experimental data and initial analysis for two sets of discharges will be presented in

this paper. The setup and approach will be discussed in section 2. The sawtooth period

evolution during the sweep in co/counter and heating phasing will be presented in section

3. Significant changes in the sawtooth period are observed for co- and counter-current

drive phasing, and possible mechanisms for the observed evolution are discussed. We will

show that the experimental data is consistent with localized current drive at the mode

conversion layer. This is also consistent with numerical predictions with the TORIC

code, which will be presented in section 4. The TORIC simulations show a strong up-

down asymmetry in the electron damping of the mode converted waves, which results

in net current drive in the co-current direction for symmetric phasing. This prediction

will be compared with experimental data in section 5. While the data is consistent

with the TORIC predictions, localized electron heating from the mode converted waves

could also account for the observed evolution. However, the effect of localized heating

should be small in these C-Mod discharges due to strong temperature profile stiffness.

Conclusions from this experiment will be discussed in section 6.

2. Experimental setup

The Alcator C-Mod device [Hutchinson 93] is a compact (major radius R = 0.67 m,

minor radius 0.21 m), high field (BT ≤ 8.1 T) diverted tokamak. It is equipped with

three fast wave ICRF antennas [Wukitch 02]. The two 2-strap antennas at D, E-port

(D and E antennas) are operated at 80.5 and 80 MHz respectively in dipole phasing

(0, π). In the experiments reported here, the 4-strap antenna at J-port (J antenna)

was operated at 50 MHz in (0, π, π, 0) (symmetric or heating), (0, π/2, π,−π/2) and

(0,−π/2, π, π/2) (current drive) phasings. For J antenna, the strap width, separation

(center to center) and major radius location are 8 cm, 26.6 cm and 93.5 cm respectively.

This leads to k‖ = 10 m−1 (nφ = 7) at the magnetic axis for the peak of the radiated

spectrum for symmetric phasing, and k‖ = 9 m−1 (nφ = 6) for current drive phasing.

Since poloidal field effects modify and can potentially reverse the k‖ spectrum of the

mode converted waves, labeling the two current drive phasings co- and counter-current

drive as in the usual practice is not straightforward for MCCD scenarios. In general,

the MCCD direction should depend on the direction of the toroidal magnetic field and

ohmic plasma current, shown for C-Mod on Fig. 1. For clarity, we will denote the

antenna phasings according to the predicted current directions for the launched antenna

spectrum, ignoring poloidal field effects. Using this convention, the (0, π/2, π, 3π/2)

(+90 ◦) and (0,−π/2,−π,−3π/2) (−90 ◦) phasings are called counter- and co-current

drive respectively.

In the experiments reported here, the plasma mix was D, 3He and H, with a
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central electron density ne ∼ 1.5 × 10−20m−3. 3He gas was injected around 200 ms

after breakdown in deuterium in order to obtain the desired 3He concentration in the

flattop phase (0.5 - 1.5 sec here). A residual hydrogen content nH/ne ∼ 5 − 10% is

due to wall recycling and can be estimated for the ratio of Hα to Dα emission at the

plasma edge. At a toroidal field of 5.3T, a 3He concentration n3He/ne = 20% and H

concentration nH/ne = 5% creates conditions for mode conversion on the magnetic

axis at 50 MHz. In this scenario, the ion cyclotron layers for 3He and deuterium are

also present in the plasma. The small hydrogen concentration also allows D(H) minority

heating on axis with the E antenna at 80 MHz. Figure 2 shows the location of the layers

at 50 MHz and the plasma shape for the two sets of discharges 1050729 and 1050802,

which will be analyzed in detail in this paper. The location of the mode conversion

surface depends mostly on the magnetic field and the 3He concentration. Increasing the
3He concentration moves the mode conversion layer away from the 3He cyclotron layer

towards the high field side, while increasing the magnetic field moves the cyclotron and

mode conversion layers towards the low field side.

The radial location of the mode conversion layer can be estimated experimentally

from the electron deposition profiles. In this experiment, the profiles are obtained

using fast turn-offs in the ICRF power (≤ 10µs) and a break-in-slope approach

[Gambier 90, Lin 03]. The derivative of the electron temperature ∂Te(r)
∂t

is determined

immediately before and after the turn-off by fitting the slope of Te(t) in a time interval δt.

From the difference, the electron heating power density S(r, δt) ≈ 3
2
ne∆

∂Te(r)
∂t

associated

with RF absorption can be calculated at the location of the temperature measurement.

On Alcator C-Mod, the break-in-slope approach can be routinely used with

temperature measurements from Electron Cyclotron Emission (ECE) diagnostics. The

experiments reported here used a 10-channel grating polychromator (GPC) [O’Shea 97]

and a 32 channel 2nd harmonic X-mode radiometer (FRC-ECE) [Heard 99]. A 50 µs

time resolution was used in the analysis. The electron density is measured with a

Thomson scattering system [Hughes 03]. The phase contrast imaging (PCI) system

[Mazurenko 01] on C-Mod was not used in the experiment since the q = 1 surface is

outside its observation window.

The location of the peak electron absorption from the break-in-slope approach can

be used to estimate the 3He concentration. The concentration for which the predicted

radial location of the mode conversion surface matches the peak electron heating location

can be considered as a quick estimate during the experiment. A more accurate estimate

is obtained by comparing the measured deposition profiles and TORIC simulations with

different 3He concentrations. This approach constrains the n3He/ne within ±1%, and is

generally within 2-3 percentage points of the initial estimate. In previous experiments,

the estimated location was also shown to be consistent with the radial location of the

density fluctuations measured with PCI. The location of the peak fluctuation amplitude

measured by PCI changes only by 1 or 2 cm in the flattop.

Since the changes in the 3He concentration between or during discharges are small,

a controlled sweep of the mode conversion layer can be obtained by a slow ramp of the
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toroidal field.

3. Sawtooth period changes with MCCD

This section presents and discusses experimental data for two sets of discharges in which

the mode conversion layer was swept partially or completely through the inversion radius

surface on the high field side.

3.1. Experimental data

The evolution of the toroidal field and electron temperature measured by the FRC-ECE

X-mode radiometer is shown on Fig. 3 for the two sets of discharges 1050802 (a) and

1050729 (b). The temperature trace corresponds to a single ECE channel. Therefore

the location of the temperature measurement changes as the toroidal field is varied, but

it remains inside the q = 1 surface and allows a comparison of the sawtooth cycle and

its period. A comparison of the sawtooth period evolution is shown on Figs. 4 and 5.

In the two sets of discharges 1050729 and 1050802, the antenna phasing was the only

control parameter varied.

Significant differences in the sawtooth period evolution are observed in both sets of

discharges. Comparing Figs. 4 and 5, it can be seen that as the mode conversion layer

moves away from the magnetic axis, the sawtooth period shortens to ∼ 4 ms in co-current

drive then lengthens to ∼ 10 ms. A reversed evolution is obtained for counter-current

drive, although the period is not reduced as much. The sawtooth period lengthens to ∼

11 ms. The evolution in symmetric phasing is similar to that in co-current drive phasing

until 0.9 s (see Fig. 4). Using concentration estimates from the break-in-slope analysis,

it is possible to compare the location of the mode conversion surface with the inversion

radius. In the 1050802 discharges, the inversion radius is around 75.5 cm. This is about

1 cm outside the mode conversion layer location for which the the co and counter-current

drive curves crossover. In the 1050729 discharges, only half of the evolution is obtained

but the cross-over position is less obvious. The curves suggest it occurs when the mode

conversion layer is around 75 cm. Since the inversion radius is around 76.5 cm in this

discharge, we find that the relative positions are qualitatively consistent.

While the achieved discharges parameters are very similar, unexpected events like

impurity injections or antenna faults can hinder the comparison. Such events are

highlighted with shaded color in Fig. 3. Impurity injections induce a rapid increase in

the radiated power and cool down the edge plasma. The core temperature is reduced and

the sawtooth period is typically shortened. The effects typically last for a confinement

time τE ∼ 50 ms, after which the plasma recovers. This typical evolution after an

impurity event is illustrated on Fig. 5 between 0.95 - 1 s. Similar events occurred in the

counter-current drive discharge of 1050802 around 0.75 s, and repeatedly in the heating

discharge of 1050802 after 0.9 s. In addition to the transient effect on temperature, it

is possible that the impurity influx changes the plasma composition and therefore the
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location of the mode conversion layer, although this effect is hard to evaluate.

3.2. Initial discussion of current drive effects

The observed variations in the sawtooth period are similar to that obtained in ICCD or

Electron Cyclotron Current Drive (ECCD) experiments when the deposition is scanned

around the q = 1 surface. In [Bhatnagar 94], as the ion cyclotron layer was swept on JET

through the inversion radius rinv on the inboard side, +90 ◦ injection inside rinv shortened

the sawtooth period and lengthened it outside rinv. The trend was reversed with −90 ◦

injection. On the outboard, the changes were in the opposite direction in both phasings.

The observed sawtooth period evolution was attributed to local changes in the safety

factor shear at the q = 1 surface due to localized ICCD. Recent experiments with ECCD

on ASDEX-Upgrade [Mueck 05] also have also provided evidence for this mechanism.

As the ECCD deposition was scanned across the plasma radius, sawtooth oscillations

were completely stabilized with co-ECCD outside the inversion radius or counter-ECCD

inside the inversion radius. Complete stabilization is usually the equivalent of a long

or infinite sawtooth period. The sawtooth period can also be decreased with co-ECCD

inside the rinv. In further experiments on ASDEX-Upgrade [Manini 05], the sawtooth

period evolution was studied in a similar scan but without complete stabilization and

using different current profile widths. Again, the sawtooth period was lengthened for

co-current drive outside the inversion radius, and shortened inside. The evolution was

reversed in counter-current drive. Note that in both ASDEX-Upgrade experiments,

the plasma were also heated with Neutral Beam Injection (NBI). Careful analysis was

required to isolate the ECCD and NBI-related contributions to the sawtooth period

changes.

These results suggests that localized MCCD could account for the observed

sawtooth period evolution in the experiments reported here. The location of the

inversion radius and mode conversion layer is consistent and so is the evolution for

the opposite phasings. However, it is essential to discuss other possible mechanisms

which may affect the sawtooth period and their relevance to this experiment. Since

the plasmas considered here are ICRF-heated with exclusion of other auxiliary heating

systems, the main competing processes are related to fast wave ion cyclotron damping

and fast ions populations.

The stabilizing effect of energetic ions inside the q=1 surface is discussed in

[Porcelli 91] and has been obtained experimentally with ICRF minority heating on

several tokamaks including C-Mod. Varying the antenna phasing can change the fast

particle pressure profiles inside the q=1 surface due to an ICRF-induced particle pinch

[Eriksson 98] and thus result in sawtooth period changes. In the experiment reported

here, minority heating of 3He ions can occur in addition to MECH, and while the large
3He concentration minimizes this mechanism, it is not possible to exclude completely a

contribution from an energetic 3He ion population. But this contribution alone cannot

account for the observed variations. Indeed, a comparison between the ion cyclotron
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layer positions in the 1050729 and 1050802 discharges on Fig. 2 shows that at the

cross-over point the 3He ion cyclotron layer was on axis and around the inversion radius

respectively. In the 1050802 discharges, the 3He ion cyclotron layer is inside the inversion

radius surface after 0.8 sec, yet the sawtooth period in the three phasings is comparable

after 1.1 sec. The scan was continued until 1.4 sec, at which point the 3He ion cyclotron

layer is on axis and the sawtooth period (not shown) is still unchanged as the antenna

phasing is varied. The sawtooth period is also only slightly longer than during the

ohmic phase (before .6 sec), indicating little fast particle stabilization. Therefore, a

contribution from energetic 3He ions in this experiment is very unlikely.

Following the same approach, one can exclude ICCD as a dominant mechanism in

this experiment. While the 3He ion cyclotron layer is near the inversion radius in the

1050802 discharges, it is on axis for the 1050729 discharges and ICCD cannot be possibly

involved. Ion Cyclotron Current Drive has been investigated on Alcator C-Mod with

D(H) minority heating but a similar deposition scan as discussed here did not induce

clear changes in the sawtooth period. As pointed out in [Bhatnagar 94], the current

drive efficiency for D(3He) scenario is lower compared to D(H). Therefore, comparing

these D(H) minority heating results with the D(3He) mode conversion regime here, one

may conclude that ICCD is not the dominant contribution here.

Based on this initial discussion, it appears that localized current drive around

the mode conversion surface is the most plausible mechanism to explain the observed

sawtooth period evolution. To further support this conclusion, we will show in the next

section that the driven current profiles predicted by full wave TORIC simulations are

qualitatively consistent with the experimental results. The evolution in heating phasing

will be discussed separately in the last section.

4. TORIC modeling

4.1. Presentation of the TORIC code

The full wave code TORIC [Brambilla 99] solves the finite Larmor radius (FLR)

equations in the Ion Cyclotron Range of Frequencies for axisymmetric plasmas. The

RF electric field solution on each flux surface ψ is represented at a given frequency as a

sum of poloidal and toroidal modes:

~E(ψ, θ, φ) =
∑

nφ

exp(inφφ)
∑

mθ

Ẽψ,mθ,nφ
exp(imθθ)

The sum is truncated at specified poloidal and toroidal mode numbers mθ and nφ,

where the limits are chosen so that the wavefields of the excited ion cyclotron waves

can be numerically resolved. The coefficients Ẽψ,mθ,nφ
are calculated by substituting

the electric field solution in the wave equation and using a variational approach. The

toroidal symmetry allows to calculate each nφ solution independently. However, the

poloidal modes and radial solutions are coupled in general due to geometric and finite

Larmor radius effects. The limits assumed in TORIC for the plasma response simplify
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the resulting system of equations significantly, allowing for an efficient numerical solution

with a sparse, block tridiagonal stiffness matrix. Still, most of the relevant physics

around the cyclotron frequencies of the plasma ions can be retained. The plasma

model describes the compressional, torsional Alfvén branches, including kinetic effects,

and the lowest order Ion Bernstein Waves (IBW), absorption by ions at the cyclotron

frequency and its first harmonics and by electrons through electron Landau and transit

time damping. The leading effects of toroidicity on cyclotron absorption and parallel

dispersion are also taken into account. The electron Landau damping of Ion Bernstein

Waves is treated by adding an imaginary part to the FLR coefficient to include relevant

contributions from higher order terms in k⊥ρi.

The simulations presented here are done with a parallelized version of the code, run

on a 48-CPU cluster at the MIT Plasma Science and Fusion Center. Typically, 500 radial

elements and 127 to 255 poloidal modes are required to obtain convergence for typical

mode conversion scenarios in C-Mod. The antenna spectrum can be calculated using the

one-dimensional FELICE code or simplified antenna models in TORIC. While the latter

option was used for the PCI analysis in [Lin 05], we used FELICE in this paper since it

provides a better description of the antenna geometry and of the density profiles at the

plasma edge. For the C-Mod antennas, both approaches predict that negligible power

is coupled to modes with |nφ| ≥ 15 and the code is usually run with −20 ≤ nφ ≤ 20 for

C-Mod scenarios. A complete simulation of a mode conversion scenario is run in less

than a day at this resolution, allowing a thorough and accurate survey of experimental

cases.

4.2. TORIC simulations

TORIC simulations for the 1050802 discharges at 0.85 sec are shown on Fig. 6 for the

three phasings in the experiment. Fig. 6 (a) shows the power deposition profiles for

electrons and all ions species. Electron absorption dominates and accounts for ∼ 60

% of the coupled ICRF power. Over the entire antenna spectrum (−20 ≤ nφ ≤ 20),

the profiles show a two peak structure corresponding to nφ = ±7 at the maximum

of the radiated spectrum. The co and counter-CD phasings favor positive or negative

toroidal mode numbers respectively, while the symmetric heating phasing appears as

a combination of the two. It appears that the power deposition is closer to the axis

for positive nφ, which as we see later corresponds to a vertical shift in the deposition

location along the mode conversion surface.

The current drive efficiency associated with each (ψ,mθ, nφ) mode in the TORIC

simulations can be calculated using the Ehst Karney parametrization [Ehst 91]. This

allows to evaluate the reduction in the driven currents associated with magnetic

trapping. Fig. 6 (b) shows an estimate of the current profiles for the 1050802 discharges

based on the current profile reconstructed by EFIT and the driven currents computed

by TORIC. For this off-axis mode conversion current drive scenario, the overall current

drive efficiency is low. The net driven currents are less than 20 kA. While this value
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is small compared to the plasma current Ip = 600kA, the local change in the current

density is nevertheless significant. The peak driven current density for the co-current

drive phasing is 4MA m−2. At the location of the mode conversion layer, the current

density estimated by EFIT is ∼ 10MA m−2. Therefore, we can expect significant changes

in the q profile associated with these driven current profiles.

The shape of the driven current density profiles predicted by TORIC exhibits

noticeable differences for the co, counter-CD and heating phasings. While the driven

current density profile for co-current drive is peaked with a slight reversal outside, the

profile in counter-current drive is bipolar, with currents in the counter-CD direction

inside and in the co-direction outside. Note that the small difference in current density

for r/a < 0.2 corresponds to a weak FWCD effect.

With these simulation results, we can move forward in our interpretation of the

experimental results. The driven currents predicted by TORIC are clearly large enough

to change the safety profile locally. We can compare the overall shape of the driven

current profiles predicted by TORIC with that in the other experiments mentioned

above. In co-current drive phasing, the driven current profile is similar to that in ECCD

experiments [Manini 05]. It increases the shear at the q=1 surface when deposited inside

and decreases it when deposited outside, which results in an shorter sawtooth period

inside and longer outside. The bipolar profile for counter-current drive phasing appears

more similar to that in the ICCD experiments [Bhatnagar 94]. The driven currents

tend to flatten the shear over a relatively large radius and thus lengthen the sawtooth

periods. As in [Bhatnagar 94], the sawtooth period is not reduced during the sweep. In

both cases, assuming that the q=1 surface does not move during the scan, the width of

the predicted driven current profiles should also be consistent with the radial extent of

the sawtooth period changes on Fig. 4. We can see that this is indeed the case in the

co- and counter-current drive phasings.

Therefore, this qualitative comparison shows that the TORIC predictions and the

experimental results are compatible. This supports the interpretation of the observed

sawtooth period evolution in co- and counter-current drive phasing in terms of localized

mode conversion current drive.

5. Up-down asymmetries and evolution in heating phasing

5.1. Mode conversion physics and up-down asymmetries

This overall agreement gives some confidence that the current drive predictions from

TORIC may be correct. Since the shape of the driven current profiles is very asymmetric,

it may be useful to give a brief physical interpretation for the underlying mode conversion

physics. As mentioned in the introduction, the presence of a small poloidal field

component can induce large upshifts in k‖ ≈
nφ

R
+ mθ

r
Bθ

B
. For off-axis mode conversion

scenarios, the poloidal field term dominates. Since the propagation vector for mode

converted Ion Bernstein Waves (IBW) and Ion Cyclotron Waves (ICW) points towards
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the low field side, the sign of the poloidal mode number mθ is reversed above and below

the midplane and so is therefore the direction of toroidal propagation for the mode

converted waves. Mode converted waves damping above the midplane will drive current

in one direction with respect to the plasma current, while mode converted damping below

the miplane will drive current in the opposite direction. The direction and location of

the current drive effects reflects therefore vertical asymmetries in the electron power

deposition along the mode conversion surface. Fig. 7 shows a two-dimensional contour

plot of the electron absorption for the TORIC simulations above in the counter-current

drive case. The flux surfaces correspond to increments of 0.1 in r/a mapped on the

outer midplane, so that we can compare this plot with the counter-current drive curve

on Fig. 6 (a). The deposition on the inside occurs above the midplane and induces

counter-current drive, the deposition on the outside occurs below the midplane and

induces co-current drive. For co-current phasing, the contour plot for the power density

deposited on electrons is similar, however absorption below the midplane dominates

and the driven currents are preferentially in the co-direction. Studies of the dispersion

curves in a one-dimensional slab model [Parisot 05] suggest that the peak absorption

occurs where the local poloidal field becomes large enough for mode conversion to

ICW to start dominating over mode conversion to IBW. In this region the two waves

cannot be clearly distinguished based only on the local dispersion relation. However,

TORIC predicts little current drive from Ion Bernstein Waves away from the confluence

region, therefore we can state that the MCCD currents in TORIC are driven by mode

converted Ion Cyclotron Waves. The up-down asymmetry in the wavefields and power

absorption close to the IBW-ICW confluence region cannot be explained on the basis of

the local dispersion relation only. It has been observed almost systematically for C-Mod

plasmas in two dimensional full wave simulations with TORIC, in particular during the

comparison with PCI measurements [Lin 05], and with AORSA in the context of flow

drive studies [Jaeger 03].

Perhaps the most striking consequence of this up-down asymmetry is the prediction

of significant net current drive in symmetric phasing. As can be seen on Fig. 6 (b),

the profile in symmetric phasing appears as an average over the current profiles in co-

and counter-current drive. However, because of the asymmetry in the two profiles,

net currents in the co-direction are still present, with a peak current density of 1.5 MA

m−2. This can be again related to larger electron absorption at the IBW-ICW confluence

below the midplane than above the midplane. In this context, an experimental study of

the sawtooth period evolution in heating phase may give indications of this effect and

constitute a further test of the TORIC MCCD modeling.

5.2. Evolution in heating phasing

The sawtooth period evolution for the heating phasing was studied as part of the 1050802

set of discharges. The evolution can be seen on Fig. 4. While impurity injections hamper

the interpretation after .9 sec, the earlier part appears to be similar to the evolution in co-
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current drive phasing case. This appears to be consistent with the TORIC predictions.

However another effect can be important in this case and must be considered.

In addition to current drive, localized electron heating around the q = 1 surface

can affect the sawtooth period. This effect has been identified most clearly in Electron

Cyclotron Heating (ECH) experiments on TCV [Angioni 03]. In these experiments, an

ECH beam was injected in the plasma so that k‖ ≈ 0. As the deposition location was

swept through the inversion radius, the sawtooth period increased from 4 ms to 8 ms

then decreases again to 4 ms. This result can still be understood in terms of changes in

the safety factor shear s1 at the q = 1, however the process is less direct for localized

current drive. As discussed in [Graves 05], the evolution of s1 is related to the resistive

diffusion of the poloidal field after a sawtooth reconnection event. As the resistivity

gradient at the q = 1 surface is decreased due to localized heating just outside the q = 1

surface, the rise of the shear s1 is slower. According to the Porcelli model [Porcelli 96],

a sawtooth crash is triggered if s1 exceeds a critical value sc. Therefore, assuming that

other possible trigger conditions are not met, localized heating outside the q = 1 surface

will delay the sawtooth crash and increase the period. The basis for this mechanism was

confirmed through simulations with the transport code PRETOR [Boucher 92], using

the trigger conditions in the Porcelli model. The code could reproduce qualitatively

the sawtooth period evolution observed in the TCV experiments. As discussed in

[Angioni 03], current drive with RF waves is always accompanied by localized heating,

and therefore the effect discussed here will be present to some degree in current drive

phasings. If the current drive effect can be considered symmetric with respect to the

q = 1 surface, localized heating will induce an asymmetry and reinforce the co-current

drive effect. The sawtooth period increase will be larger for co-current drive outside

than for counter-drive inside. The decrease in the sawtooth period for counter-current

drive outside the q = 1 surface will also be reduced. This behavior is in fact consistent

with the observed sawtooth period evolution in C-Mod, which suggests that this effect

may be involved.

Simulations similar to that with PRETOR for the TCV experiments would be

necessary to estimate the strength of the heating effect on C-Mod. Assuming that

resistivity gradient change is the dominant mechanism involved, we can argue that

its contribution will be small in the experiments presented here. Indeed, strong

profile stiffness for the electron temperature has been systemically observed in C-Mod

[Greenwald 97] in almost all conditions, including the L-mode confinement regime here.

Accordingly, the equilibrium electron temperature gradient and therefore resistivity

gradient are expected to be largely unchanged as localized heating is applied. The

observed profile resiliency is understood theoretically as due to turbulent transport by

Ion Temperature Gradient (ITG) modes. In C-Mod, the electron and ion channels

are tightly coupled due to high density at which the tokamak operates. The thermal

equilibration is fast and maintains Te

Ti
≈ 1. Both ion and electron temperature gradient

is thus determined by marginal stability for the ITG modes in the ion channel. This

means that, in equilibrium, the temperature gradients remains close to the critical value
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for the onset of the turbulence. Of course, sawtooth reconnection implies a transient

deviation from transport equilibrium inside the mixing radius, which means that the

temperature gradients will be below the critical value for at least part of the sawtooth

ramp phase. The q = 1 surface is however close to the inversion radius and the local

change in temperature during a sawtooth crash is small. Therefore we expect that

marginal stability for turbulence will be restored quickly after sawtooth crashes. As a

result, when the mode conversion heating surface moves outside the q = 1 surface, the

resistivity gradient at the q = 1 radius will not change significantly. Therefore localized

heating is not expected to induce large changes in the sawtooth period.

On the other hand, very small driven currents can change the sawtooth period

significantly, as stated in [Angioni 03]. This is confirmed by ECH experiments on TCV

[Henderson 01], where small amounts of currents can be driven by the beam even for

injection with k‖ ≈ 0 due to upshifts associated with the field helicity. The small

driven current density results in sawtooth period changes, in addition to that induced

by localized heating. In the experiments, the beam launched with zero toroidal angle

was swept through the entire plasma cross section and crossed the q = 1 surface both

above and below the midplane. A different sawtooth period evolution was observed

in the two crossings for off-axis deposition, which could be be explained by localized

heating effects alone. Ray tracing simulations indicated that small currents, with a total

of ∼ 5kA out of a plasma current ∼ 200kA, were driven with different polarity above

and below the midplane due to poloidal field effects. This was confirmed by reversing

the sign of the toroidal field and observing a mirrored behavior during the scan. The

authors concluded that small amounts of currents driven by the ECH were sufficient to

change the sawtooth period significantly as compared to the effect of localized heating.

While this discussion is qualitative, it suggests that the localized electron associated

associated with mode conversion may not be sufficient to explain the sawtooth period

evolution in heating phasing on C-Mod. On the other hand, TORIC simulations indicate

that significant MCCD currents can be driven in symmetric phasing. By comparing the

magnitude of the driven currents and the sawtooth period changes in the three phasings,

we conclude that the currents predicted by TORIC in heating phasing are sufficient

to explain the observed sawtooth period evolution in the experiment. This analysis

indicates that the observed sawtooth period evolution in the C-Mod MCCD experiments

here is qualitatively consistent with the TORIC predictions for current drive phasings

but also for the results in heating phasing. This can be regarded as an experimental

evidence for the asymmetry in the MCCD predicted by TORIC simulations.

6. Conclusions

Significant changes in the sawtooth period have been obtained experimentally on Alcator

C-Mod with ICRF mode conversion around the q = 1 surface. As the mode conversion

layer was swept through the inversion radius in co-, counter-current drive and heating

phasing, the period varied from 3 ms to 12 ms. While mechanisms like fast particle
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stabilization or Ion Cyclotron Current Drive cannot explain the experimental results,

the differences in the sawtooth period evolution between co and counter-current drive

phasing are consistent with changes in the shear at the q =1 surface associated with

localized current drive. According to numerical simulations with the full wave TORIC

code, currents comparable in magnitude to the local ohmic current density can be driven

by mode converted Ion Cyclotron Waves. The shape of the predicted driven current

profiles is consistent with the experimental results. A strong up-down asymmetry in the

wave fields and power deposition is observed in the simulations, resulting in significant

net co-current drive for symmetric antenna phasing. This prediction is consistent with

the observed sawtooth period evolution in heating phasing, which is comparable to

that in co-current drive phasing. Localized electron heating could also account for this

similarity but it is unlikely to be important in the experiment since temperature profile

stiffness prohibits large changes in the resistivity gradient at the q = 1 surface. In

summary, the sawtooth period changes observed experimentally in co, counter-current

drive and heating phasing can be explained by the MCCD profiles predicted by TORIC.

These results can therefore be regarded as an experimental indication for the asymmetry

in the MCCD predicted in the simulations.

Acknowledgments

This work is supported by Department of Energy Coop. Agreement DE-FC02-

99ER54512 and utilized the MIT Plasma Science and Fusion Center Theory Group

parallel computational cluster.

References

[Angioni 03] C. Angioni et al. Effects of localized electron heating and current drive on the

sawtooth period. Nucl. Fusion, vol. 43, pages 455–468, 2003.

[Bhatnagar 94] V.P. Bhatnagar et al. Local magnetic shear control in a tokamak via fast wave

minority ion current drive: theory and experiments in JET. Nucl. Fusion, vol. 34,

page 1579, 1994.

[Bonoli 97] P. Bonoli et al. Electron heating via mode converted ion Bernstein waves in the

Alcator C-Mod tokamak. Physics of Plasmas, vol. 4, page 1774, 1997.

[Boucher 92] D. Boucher & P.H. Rebut. In Proc. IAEA Tech. Com. on Advances in Simulation

and Modell. of Thermonuclear Plasmas, Montreal, page 142, 1992.

[Brambilla 99] M. Brambilla. Numerical simulation of ion cyclotron waves in tokamak plasmas.

Plasma Phys. Cont. Fusion, vol. 41, pages 1–34, 1999.

[Ehst 91] D. Ehst & C. Karney. Approximate formula for radio-frequency current drive

efficiency with magnetic trapping. Nucl Fusion, vol. 31, page 1933, 1991.

[Eriksson 98] L-G. Eriksson et al. Evidence for a Wave Induced Particle Pinch in the Presence of

Toroidally Asymmetric ICRF Waves. Phys. Rev. Lett., vol. 81, page 1231, 1998.

[Faulconer 89] D.W. Faulconer et al. The role of temperature and rotationnal transform in ICRH

mode conversion. In Proc. 14th EPS Conf. on controlled fusion and plasma

physics, volume 11D (ECA), page 932, 1989.

[Gambier 90] D.J. Gambier et al. ICRF power deposition profile and determination of the electron



Sawtooth period changes with mode conversion current drive on Alcator C-Mod 15

thermal diffusivity by modulation experiments in JET. Nuclear Fusion, vol. 30,

pages 23–34, 1990.

[Graves 05] J. P. Graves et al. Sawtooth control in fusion plasmas. Plasma Phys. Control.

Fusion, vol. 47, pages B121–B133, 2005.

[Greenwald 97] M. Greenwald et al. H mode confinement in Alcator C-Mod. Nucl. Fusion, vol. 37,

page 793, 1997.

[Heard 99] J.W. Heard et al. High resolution electron cyclotron emission temperature profile

and fluctuation diagnostic for Alcator C-Mod. Rev. Sci. Instr., vol. 70, pages

1011–1013, 1999.

[Henderson 01] M.A. Henderson et al. Poloidally asymmetric plasma response with ECH deposition

near q=1 in TCV. Fus. Eng. Des., vol. 53, pages 241–248, 2001.

[Hughes 03] J.W. Hughes et al. Thomson scattering upgrades on Alcator C-Mod. Rev. Sci.

Instr., vol. 74, pages 1667–1670, 2003.

[Hutchinson 93] I.H. Hutchinson et al. First results from Alcator-C-MOD. Phys. Plasmas, vol. 1,

pages 1511–1518, 1993.

[Jaeger 03] E.F. Jaeger et al. Sheared Poloidal Flow Driven by Mode Conversion in Tokamak

Plasmas. Phys. Rev. Lett., vol. 90, page 195001, 2003.

[Lin 03] Y. Lin et al. ICRF mode conversion electron heating in D-H plasmas in the Alcator

C-Mod tokamak. Plasma Phys. Cont. Fusion, vol. 45, pages 1013–1026, 2003.

[Lin 05] Y. Lin et al. Observation and modelling of ion cyclotron range of frequencies waves

in the mode conversion region of Alcator C-Mod. Plasma Phys. Control. Fusion,

vol. 47, pages 1207–1228, 2005.

[Majeski 96] R. Majeski et al. Mode Conversion Heating and Current Drive Experiments in

TFTR. Phys. Rev. Lett., vol. 76, pages 764–767, 1996.

[Manini 05] A. Manini et al. Optimisation of Sawtooth Control using ECCD in ASDEX Upgrade.

In 32th EPS Conf. on Plasma Physics, Tarragona, ECA vol 29C, 2005.

[Mantsinen 04] M.J. Mantsinen et al. Localized bulk electron heating with ICRF mode conversion

in the JET tokamak. Nucl. Fusion, vol. 44, pages 33–36, 2004.

[Mazurenko 01] A. Mazurenko. Phase Contrast Imaging on Alcator C-Mod. PhD thesis, MIT,

Cambridge, MA, 2001.

[Mueck 05] A. Mueck et al. Sawtooth control experiments on ASDEX Upgrade. Plasma Phys.

Cont. Fusion, vol. 47, pages 1633–1655, 2005.

[Nelson-Melby 03] E. Nelson-Melby et al. Experimental Observations of Mode-Converted Ion Cyclotron

Waves in a Tokamak Plasma by Phase Contrast Imaging. Phys. Rev. Lett.,

vol. 90, page 155004, 2003.

[Noterdaeme 96] J-M. Noterdaeme et al. ICRF Heating results in ASDEX-Upgrade and W7-AS. In

Proc. 16th Conf. on Fusion energy, Montreal, CA, volume 3. IAEA, 1996.

[O’Shea 97] P.J. O’Shea. Measurements of ICRF Power Deposition and Thermal Transport with

an ECE Grating Polychromator on the Alcator C-Mod Tokamak. PhD thesis,

Mass. Inst. of Tech, Cambridge, MA, 1997.

[Parisot 05] A. Parisot et al. Numerical studies of poloidal field effects on ICRF Mode conversion.

In Proceedings of the 16th Topical Conference on RF power in plasmas, Park City,

UT, April 2005.

[Perkins 77] F.W. Perkins. Heating Tokamaks via the ion-cyclotron and ion-ion hybrid

resonances. Nucl. Fusion, vol. 17, page 1197, 1977.

[Porcelli 91] F. Porcelli. Fast particle stabilisation. Plasma Phys. Cont. Fusion, vol. 33, pages

1601–1620, 1991.

[Porcelli 96] F. Porcelli et al. Model for the sawtooth period and amplitude. Plasma Phys.

Control. Fusion, vol. 38, pages 2163–2186, 1996.

[Ram 91] A. K. Ram & A. Bers. Propagation and damping of mode converted ion-Bernstein

waves in toroidal plasmas. Phys. of Fluids B, vol. 3, pages 1059–1069, 1991.



Sawtooth period changes with mode conversion current drive on Alcator C-Mod 16

J antenna

D & E antennas

+90º/Ctr

-90º/CoBT

Ip

k

Figure 1. Top view of the Alcator C-Mod tokamak showing the three ICRF antennas

and the directions of the magnetic field and plasma current. The denominations for

the current phasings are also indicated, with the blue arrows showing the directions of

the wave vector ~k

[Saoutic 96] B. Saoutic et al. Mode conversion heating experiments on the Tore Supra Tokamak.

Phys. Rev. Lett, vol. 76, page 1647, 1996.

[Stix 92] T. H. Stix. Waves in plasma. American Institute of Physics, 1992.

[Swanson 85] D.G. Swanson. Radio Frequency Heating in the Ion Cyclotron Range of Frequencies.

Physics of Fluids, vol. 28, page 2645, 1985.

[Wilson 98] J. R. Wilson et al. Ion cyclotron range of frequencies heating and flow generation

in deuterium-tritium plasmas. Phys. plasmas, vol. 5, pages 1721–1727, 1998.

[Wright 04] J.C. Wright et al. Full wave simulations of fast wave mode conversion and lower

hybrid wave propagation in tokamaks. Phys. Plasmas, vol. 11, pages 2473–2479,

2004.

[Wukitch 02] S.J. Wukitch et al. Performance of a compact four-strap fast wave antenna. In

19th Fusion Energy Conference, Lyon, France, IAEA FT/P1-14, 2002.

[Wukitch 05] S. Wukitch et al. Ion cyclotron range of frequency mode conversion physics in

Alcator C-Mod: Experimental measurements and modeling. Phys. Plasmas,

vol. 12, page 056104, 2005.



Sawtooth period changes with mode conversion current drive on Alcator C-Mod 17

0.4 0.5 0.6 0.7 0.8 0.9

−0.4

−0.2

0.0

0.2

0.4

D
e

u
te

ri
u

m
 C

y
c

lo
tr

o
n

 L
a

y
e

r

H
el

iu
m

 3
 C

yc
lo

tr
o

n
 L

ay
er

M
o

d
e 

co
n

ve
rs

io
n

 la
ye

r

Fast wave cutoff

0.4 0.5 0.6 0.7 0.8 0.9

−0.4

−0.2

0.0

0.2

0.4

M
o

d
e 

co
n

ve
rs

io
n

 la
ye

r

H
el

iu
m

 3
 C

yc
lo

tr
o

n
 L

ay
er

D
e

u
te

ri
u

m
 C

y
c

lo
tr

o
n

 L
a

y
e

r

1050729 - 1.35s
D, 12 % 3He, 5 % H 

1050802 - 0.85s
D, 23 % 3He, 5 % H 

Figure 2. Magnetic configuration and position of the mode conversion and cyclotron

layers for two sets of discharges.
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Figure 3. Evolution of the sawteeth in two groups of discharges with similar

parameters but different phasings. The shaded regions indicate events like impurity

injections or RF trips which hinder the comparison.



Sawtooth period changes with mode conversion current drive on Alcator C-Mod 19

0.5 0.6 0.7 0.8 0.9 1.0 1.1 Time [s]
0

2

4

6

8

10

12

14

S
a

w
to

o
th

 p
e

ri
o

d
 [

m
s
]

0

1

2

3

R
F 

p
o

w
er

 [M
W

]

MC layer location, mapped to the outer midplane [cm]

Co!CD phasing

Ctr!CD phasing

Heating phasing

73 74 75 76 77

1050802
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Figure 5. Evolution of the sawteeth in the second group of discharges on Fig. 3. The
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estimate. The inversion radius is at about 76.5 cm.
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