144 research outputs found
Blocking CD248 molecules in perivascular stromal cells of patients with systemic sclerosis strongly inhibits their differentiation toward myofibroblasts and proliferation: A new potential target for antifibrotic therapy
Background: Fibrosis may be considered the hallmark of systemic sclerosis (SSc), the end stage triggered by different pathological events. Transforming growth factor-β (TGF-β) and platelet-derived growth factor BB (PDGF-BB) are profibrotic molecules modulating myofibroblast differentiation and proliferation, respectively. There is evidence linking CD248 with these two molecules, both highly expressed in patients with SSc, and suggesting that CD248 may be a therapeutic target for several diseases. The aim of this work was to evaluate the expression of CD248 in SSc skin and its ability to modulate SSc fibrotic process. Methods: After ethical approval was obtained, skin biopsies were collected from 20 patients with SSc and 10 healthy control subjects (HC). CD248 expression was investigated in the skin, as well as in bone marrow mesenchymal stem cells (MSCs) treated with TGF-β or PDGF-BB, by immunofluorescence, qRT-PCR, and Western blotting. Finally, in SSc-MSCs, the CD248 gene was silenced by siRNA. Results: Increased expression of CD248 was found in endothelial cells and perivascular stromal cells of SSc skin. In SSc-MSCs, the levels of CD248 and α-smooth muscle actin expression were significantly higher than in HC-MSCs. In both SSc- and HC-MSCs, PDGF-BB induced increased expression of Ki-67 when compared with untreated cells but was unable to modulate CD248 levels. After CD248 silencing, both TGF-β and PDGF-BB signaling were inhibited in SSc-MSCs. Conclusions: CD248 overexpression may play an important role in the fibrotic process by modulating the molecular target, leading to perivascular cells differentiation toward myofibroblasts and interfering with its expression, and thus might open a new therapeutic strategy to inhibit myofibroblast generation during SSc
Ciliomotor circuitry underlying whole-body coordination of ciliary activity in the Platynereis larva
This is the final version of the article. Available from the publisher via the DOI in this record.Ciliated surfaces harbouring synchronously beating cilia can generate fluid flow or drive locomotion. In ciliary swimmers, ciliary beating, arrests, and changes in beat frequency are often coordinated across extended or discontinuous surfaces. To understand how such coordination is achieved, we studied the ciliated larvae of Platynereis dumerilii, a marine annelid. Platynereis larvae have segmental multiciliated cells that regularly display spontaneous coordinated ciliary arrests. We used whole-body connectomics, activity imaging, transgenesis, and neuron ablation to characterize the ciliomotor circuitry. We identified cholinergic, serotonergic, and catecholaminergic ciliomotor neurons. The synchronous rhythmic activation of cholinergic cells drives the coordinated arrests of all cilia. The serotonergic cells are active when cilia are beating. Serotonin inhibits the cholinergic rhythm, and increases ciliary beat frequency. Based on their connectivity and alternating activity, the catecholaminergic cells may generate the rhythm. The ciliomotor circuitry thus constitutes a stop-and-go pacemaker system for the whole-body coordination of ciliary locomotion.The research
leading to these results received funding from the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013)/European Research Council Grant Agreement
260821. This project is supported by the Marie Curie ITN ‘Neptune’, GA 317172, funded under
the FP7, PEOPLE Work Programme of the European Commission. This project is supported by the
DFG - Deutsche Forschungsgemeinschaft (Reference no. JE 777/3–1).Deutsche Forschungsgemeinschaft 777/3-1 Gaspar JekelyMax-Planck-Gesellschaft Open-access funding Gaspar JekelyEuropean Commission GA 317172 Gaspar Jekel
Interleukin-32 in systemic sclerosis, a potential new biomarker for pulmonary arterial hypertension
Background: Pulmonary arterial hypertension (PAH) is a severe complication of systemic sclerosis (SSc), associated with a progressive elevation in pulmonary vascular resistance and subsequent right heart failure and death. Due to unspecific symptoms, the diagnosis of PAH is often delayed. On this basis, it is of great value to improve current diagnostic methods and develop new strategies for evaluating patients with suspected PAH. Interleukin-32 (IL-32) is a proinflammatory cytokine expressed in damaged vascular cells, and the present study aimed to assess if this cytokine could be a new biomarker of PAH during SSc. Methods: The IL-32 expression was evaluated in the sera and skin samples of 18 SSc-PAH patients, 21 SSc patients without PAH, 15 patients with idiopathic PAH (iPAH) and 14 healthy controls (HCs), by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC). Receiver-operating characteristic (ROC) curves were performed to evaluate the cut-off of IL-32 in identifying patients with PAH. Furthermore, in SSc patients, correlation analyses were performed between IL-32 sera levels and mean pulmonary artery pressure (mPAP) evaluated by right heart catheterization (RHC) and systolic pulmonary artery pressure (sPAP), obtained by echocardiography. Additionally, the number of skin IL-32+ cells was correlated with modified Rodnan skin score (mRSS). Results: In SSc-PAH patients, IL-32 sera levels were significantly higher when compared with SSc patients without PAH and patients affected by iPAH. The analysis of ROC curve showed that IL-32 sera levels above 11.12 pg/ml were able to predict patients with PAH (sensitivity = 90%, specificity = 100%). Furthermore, the IL-32 sera levels of patients with SSc correlated with both mPAP and sPAP. In the skin derived from SSc-PAH patients, the number of IL-32+ cells was significantly increased when compared with the skin derived from SSc patients without PAH, correlating with the mRSS. Conclusion: Our study suggested that sera determination of IL-32 may be a promising approach to evaluate the presence of PAH in SSc patients and together with longitudinal future studies could help to increase the understanding how these biomarkers mirror the vascular changes and the inflammatory process during SSc
First molecular identification of canine Parvovirus type 2 (CPV2) in Chile reveals high occurrence of CPV2c antigenic variant
Canine parvovirus type 2 (CPV2) is one of the most important intestinal pathogens in dogs and puppies. CPV2 has been evolved into three genetic and antigenic variants (2a, 2b, and 2c), which are distributed worldwide. We reported the first study of genetic diversity of CPV2 in Chile. Sixty-five samples were collected from puppies presenting with severe gastroenteritis and different vaccination statuses. PCR, restriction fragment length polymorphism (RFLP), and partial sequencing of the coding region of the structural viral protein VP2 was performed. Thirty of a total of 65 samples tested positive by PCR out of which 19 were further classified as CPV2c and one as CPV2a using RFLP and Sanger sequencing. The phylogeny was in concordance with the RFLP analysis. This is the first report of the genetic characterization of CPV2 in Chile and reveals a high occurrence of CPV2c
Tofacitinib May Inhibit Myofibroblast Differentiation from Rheumatoid-Fibroblast-like Synoviocytes Induced by TGF-β and IL-6
During rheumatoid arthritis (RA), the pathogenic role of resident cells within the synovial membrane is suggested, especially for a population frequently referred to as fibroblast-like synoviocytes (FLSs). In this study, we assess the markers of myofibroblast differentiation of RA-FLSs by ex vivo observations and in vitro evaluations following the stimulation with both TGF-β and IL-6. Furthermore, we investigated the possible inhibiting role of tofacitinib, a JAK inhibitor, in this context. Myofibroblast differentiation markers were evaluated on RA synovial tissues by immune-fluorescence or immune-histochemistry. RA-FLSs, stimulated with transforming growth factor (TGF-β) and interleukin-6 (IL-6) with/without tofacitinib, were assessed for myofibroblast differentiation markers expression by qRT-PCR and Western blot. The same markers were evaluated following JAK-1 silencing by siRNA assay. The presence of myofibroblast differentiation markers in RA synovial tissue was significantly higher than healthy controls. Ex vivo, α-SMA was increased, whereas E-Cadherin decreased. In vitro, TGF-β and IL-6 stimulation of RA-FLSs promoted a significant increased mRNA expression of collagen I and α-SMA, whereas E-Cadherin mRNA expression was decreased. In the same conditions, the stimulation with tofacitinib significantly reduced the mRNA expression of collagen I and α-SMA, even if the Western blot did not confirm this finding. JAK-1 gene silencing did not fully prevent the effects of stimulation with TGF-β and IL-6 on these features. TGF-β and IL-6 stimulation may play a role in mediating myofibroblast differentiation from RA-FLSs, promoting collagen I and α-SMA while decreasing E-Cadherin. Following the same stimulation, tofacitinib reduced the increases of both collagen I and α-SMA on RA-FLSs, although further studies are needed to fully evaluate this issue and confirm our results
The Density of Coronal Plasma in Active Stellar Coronae
We have analyzed high-resolution X-ray spectra of a sample of 22 active stars
observed with the High Energy Transmission Grating Spectrometer on {\em
Chandra} in order to investigate their coronal plasma density. Densities where
investigated using the lines of the He-like ions O VII, Mg XI, and Si XIII.
While Si XIII lines in all stars of the sample are compatible with the
low-density limit, Mg XI lines betray the presence of high plasma densities ( cm) for most of the sources with higher X-ray luminosity ( erg/s); stars with higher and tend to have higher
densities at high temperatures. Ratios of O VII lines yield much lower
densities of a few cm, indicating that the ``hot'' and
``cool'' plasma resides in physically different structures. Our findings imply
remarkably compact coronal structures, especially for the hotter plasma
emitting the Mg XI lines characterized by coronal surface filling factor,
, ranging from to , while we find
values from a few up to for the cooler plasma emitting the O
VII lines. We find that approaches unity at the same stellar surface
X-ray flux level as solar active regions, suggesting that these stars become
completely covered by active regions. At the same surface flux level,
is seen to increase more sharply with increasing surface flux. These
results appear to support earlier suggestions that hot K plasma in
active coronae arises from flaring activity, and that this flaring activity
increases markedly once the stellar surface becomes covered with active
regions.Comment: 53 pages, 19 figures, accepted for publication in Astrophysical
Journal. A version of the paper with higher quality figures is available from
http://www.astropa.unipa.it/Library/preprint.htm
Chandra Observations of the Pleiades Open Cluster: X-ray Emission from Late-B to Early-F Type Binaries
We present the analysis of a 38.4 ks and a 23.6 ks observation of the core of
the Pleiades open cluster. The Advanced CCD Imaging Spectrometer on board the
Chandra X-ray Observatory detected 99 X-ray sources in a 17'X17' region,
including 18 of 23 Pleiades members. Five candidate Pleiades members have also
been detected, confirming their cluster membership. Fifty-seven sources have no
optical or near-infrared counterparts to limiting magnitudes V=22.5 and J=14.5.
The unidentified X-ray sources are probably background AGN and not stars. The
Chandra field of view contains seven intermediate mass cluster members. Five of
these, HII 980 (B6 + G), HII 956 (A7 + F6), HII 1284 (A9 + K), HII 1338 (F3 +
F6), and HII 1122 (F4 + K), are detected in this study. All but HII 1284 have
high X-ray luminosity and soft X-ray spectra. HII 1284 has X-ray properties
comparable to non-flaring K-type stars. Since all five stars are visual or
spectroscopic binaries with X-ray properties similar to F-G stars, the
late-type binary companions are probably producing the observed coronal X-ray
emission. Strengthening this conclusion is the nondetection by Chandra of two A
stars, HII 1362 (A7, no known companion) and HII 1375 (A0 + A SB) with X-ray
luminosity upper limits 27-54 times smaller than HII 980 and HII 956, the B6-A7
stars with cooler companions. Despite the low number statistics, the Chandra
data appear to confirm the expectation that late-B and A stars are not strong
intrinsic X-ray sources. The ACIS spectra and hardness ratios suggest a gradual
increase in coronal temperature with decreasing mass from F4 to K. M stars
appear to have somewhat cooler coronae than active K stars.Comment: 22 pages, 4 figures, 7 tables, to appear in Ap
Expected performance of the ASTRI-SST-2M telescope prototype
ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is an
Italian flagship project pursued by INAF (Istituto Nazionale di Astrofisica)
strictly linked to the development of the Cherenkov Telescope Array, CTA.
Primary goal of the ASTRI program is the design and production of an end-to-end
prototype of a Small Size Telescope for the CTA sub-array devoted to the
highest gamma-ray energy region. The prototype, named ASTRI SST-2M, will be
tested on field in Italy during 2014. This telescope will be the first
Cherenkov telescope adopting the double reflection layout in a
Schwarzschild-Couder configuration with a tessellated primary mirror and a
monolithic secondary mirror. The collected light will be focused on a compact
and light-weight camera based on silicon photo-multipliers covering a 9.6 deg
full field of view. Detailed Monte Carlo simulations have been performed to
estimate the performance of the planned telescope. The results regarding its
energy threshold, sensitivity and angular resolution are shown and discussed.Comment: In Proceedings of the 33rd International Cosmic Ray Conference
(ICRC2013), Rio de Janeiro (Brazil). All CTA contributions at arXiv:1307.223
- …