311 research outputs found

    Receptores tirosina quinasa en cáncer

    Get PDF
    Máster Universitario en Biología y Clínica del Cáncer: Programa, Objetivos y Metodología.Peer Reviewe

    Letter to the editor: What about incorporating selenium in the therapeutic regimen of SARS-COV-2?

    Get PDF
    [ES] Carta al editor en la que se expresan las ventajas de utilizar selenio en los tratamientos terapéuticos del SARS-CoV-2

    Ionic events induced by epidermal growth factor. Evidence that hyperpolarization and stimulated cation influx play a role in the stimulation of cell growth.

    Get PDF
    Charybdotoxin, a blocker of K+ channels, and the imidazole drug SC38249, a blocker of both voltage- and second messenger-operated Ca2+ channels, were employed in mouse NIH-3T3 fibroblasts overexpressing the epidermal growth factor (EGF) receptor 1) to characterize the ionic events activated by EGF; and 2) to establish the role of those events in cell growth. The [Ca2+]i response by EGF was little changed by charybdotoxin while the parallel hyperpolarization was inhibited in a dose-dependent manner. At high toxin concentrations (greater than 3 x 10(-8) M), the effect of EGF on membrane potential was turned into a persistent depolarization sustained by both Na+ and Ca2+. Pretreatment with 10 microM SC38249 induced only minor changes of the intracellular Ca2+ release by EGF (the process responsible for the initial phase of the [Ca2+]i and membrane potential responses) and blocked the persistent, second phase [Ca2+]i and the hyperpolarization responses, both dependent on Ca2+ influx, as well as the depolarization in the charybdotoxin-pretreated cells. Long term (up to 2-day) treatment with either charybdotoxin or SC38249 failed to affect the viability and growth of unstimulated EGFR-T17 cells. Moreover, in these cells, the ionic responses to EGF were restored after a 30-min incubation in fresh medium. In contrast, growth stimulated by EGF was inhibited, moderately (-20%) by charybdotoxin and markedly (-60%) by SC38249. These results indicate for the first time that both hyperpolarization and, especially, the persistent increase of [Ca2+]i sustained by Ca2+ influx play a role in the activity of EGF, ultimately cooperating with other intracellular events in mitogenesis

    Androgen-independent prostate cancer cells circumvent EGFR inhibition by overexpression of alternative HER receptors and ligands

    Get PDF
    et al.The deregulation of the epidermal growth factor receptor (EGFR) pathway plays a major role in the pathogenesis of prostate cancer (PCa). However, therapies targeting EGFR have demonstrated limited effectiveness in PCa. A potential mechanism to overcome EGFR blockade in cancer cells is the autocrine activation of alternative receptors of the human EGFR (HER) family through the overexpression of the HER receptors and ligands. In the present study, we were interested in analyzing if this intrinsic resistance mechanism might contribute to the inefficacy of EGFR inhibitors in PCa. To this end, we selected two androgen-independent human prostate carcinoma cell lines (DU145 and PC3) and established DU145 erlotinib-resistant cells (DUErR). Cells were treated with three EGFR inhibitors (cetuximab, gefinitib and erlotinib) and the sensitivity to each treatment was assessed. The gene expression of the four EGFR/HER receptors and seven ligands of the HER family was analyzed by real-time PCR prior to and after each treatment. The receptors expression and activation were further characterized by flow cytometry and western blot analysis. EGFR inhibition rapidly induced enhanced gene expression of the EGF, betacellulin and neuregulin-1 ligands along with HER2, HER3 and HER4 receptors in the DU145 cells. In contrast, slight changes were observed in the PC3 cells, which are defective in the phosphatase and tensin homolog (PTEN) tumor suppressor gene. In the erlotinib-resistant DUErR cells, the expression of HER2 and HER3 was increased at mRNA and protein levels together with neuregulin-1, leading to enhanced HER3 phosphorylation and the activation of the downstream PI3K/Akt survival pathway. HER3 blockage by a monoclonal antibody restored the cytostatic activity of erlotinib in DUErR cells. Our results confirm that the overexpression and autocrine activation of HER3 play a key role in mediating the resistance to EGFR inhibitors in androgen-independent PCa cells.We acknowledge the Instituto de Salud Carlos III (grants RD06/0020/0041, RD06/0020/0028), Universitat de Girona (grant PUG2007A/10) and Generalitat de Catalunya (grant 2009SGR208) for providing funding for this project. D.C.S. and C.P. acknowledge their fellowships from Ministerio de Educación y Ciencia (grant AP2007-01953) and Universitat de Girona (grant BR08/19), respectivelyPeer Reviewe

    Influence of companion diagnostics on efficacy and safety of targeted anti-cancer drugs: systematic review and meta-analyses

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License.-- et al.[Background]: Companion diagnostics aim to identify patients that will respond to targeted therapies, therefore increasing the clinical efficacy of such drugs. Less is known about their influence on safety and tolerability of targeted anti-cancer agents. [Methods and findings]: Randomized trials evaluating targeted agents for solid tumors approved by the US Food and Drug Administration since year 2000 were assessed. Odds ratios (OR) and and 95% confidence intervals (CI) were computed for treatment-related death, treatment-discontinuation related to toxicity and occurrence of any grade 3/4 adverse events (AEs). The 12 most commonly reported individual AEs were also explored. ORs were pooled in a meta-analysis. Analysis comprised 41 trials evaluating 28 targeted agents. Seventeen trials (41%) utilized companion diagnostics. Compared to control groups, targeted drugs in experimental arms were associated with increased odds of treatment discontinuation, grade 3/4 AEs, and toxic death irrespective of whether they utilized companion diagnostics or not. Compared to drugs without available companion diagnostics, agents with companion diagnostics had a lower magnitude of increased odds of treatment discontinuation (OR = 1.12 versus 1.65, p < 0.001) and grade 3/4 AEs (OR = 1.09 versus 2.10, p < 0.001), but no difference in risk of toxic death (OR = 1.40 versus 1.27, p = 0.69). Differences between agents with and without companion diagnostics were greatest for diarrhea (OR = 1.29 vs. 2.43, p < 0.001), vomiting (OR = 0.86 vs. 1.44, p = 0.005), cutaneous toxicity (OR = 1.82 vs. 3.88, p < 0.001) and neuropathy (OR = 0.64 vs. 1.60, p < 0.001). [Conclusions]: Targeted drugs with companion diagnostics are associated with improved safety, and tolerability. Differences were most marked for gastrointestinal, cutaneous and neurological toxicity.Ministry of Economy and Competitiveness of Spain (BFU2012-39151 and RD12/0036/0003 to AP), and the AECC (to AP). Fondo de Investigación Sanitaria (PI13/01444) and CRIS Cancer Foundation and ACEPAIN (to AO).Peer Reviewe

    The effect of epidermal growth factor on membrane potential. Rapid hyperpolarization followed by persistent fluctuations.

    Get PDF
    The effects of epidermal growth factor (EGF) on membrane potential were investigated in suspensions of the following three cell types endowed with a large complement of specific receptors: EGFR-T17 (a clone of mouse NIH-3T3 fibroblasts overexpressing EGF receptors); A431 and KB (two human carcinoma lines). In all these lines EGF induced a rapid and marked hyperpolarization constituted by an initial peak (in all three cell lines) and a subsequent sustained plateau phase, concomitant with the well-known increase of [Ca2+]i. The time course and phorbol ester inhibitability of the membrane potential effects were the same as for the [Ca2+]i response. Experiments with Na+-free and chloride-free media excluded a major role of the latter ions in the EGF-induced hyperpolarization. In contrast, experiments with high K+ media, with the monovalent cation ionophore gramicidin and with Ca2+-free media together with either a Ca2+ ionophore (ionomycin, in A431 and EGFR-T17), or an agonist (bradykinin, in A431) addressed to a receptor coupled to phosphoinositide hydrolysis, were consistent with the involvement of Ca2+-activated K+ channels. The EGF-induced hyperpolarization was completely blocked by the K+ channel blocker, quinidine, and unaffected by a variety of other drugs. Patch clamping of individual EGFR-T17 cells confirmed the initial hyperpolarization (from approximately -30 mV, the resting potential, to -60, -80 mV) was due to activation of an outward current. This initial hyperpolarization was followed by fluctuations (period approximately 1 min) persisting as long as the cells could be analyzed. Thus, the changes of membrane potential appear to be not only novel members of the group of early events triggered by EGF in target cells but also long-lasting effects of the growth factor, which continue for unexpectedly long periods of time after EGF application

    Generation of inositol phosphates, cytosolic Ca2+, and ionic fluxes in PC12 cells treated with bradykinin

    Get PDF
    Abstract Accumulation of inositol phosphates (Ins-Ps, revealed by high performance liquid chromatography), changes of the cytosolic free Ca2+ [( Ca2+]i, revealed by fura-2), membrane potential and ionic currents (revealed by bis-oxonol and patch clamping) were investigated in PC12 cells treated with bradykinin (BK). The phenomena observed were (a) due to the activation of a B2 receptor (inhibitor studies) and (b) unaffected by pertussis toxin, cAMP analogs, and inhibitors of either cyclooxygenase or voltage-gated Ca2+ channels. During the initial tens of s, three interconnected events predominated: accumulation of Ins-1,4,5-P3, Ca2+ release from intracellular stores and hyperpolarization due to the opening of Ca2+-activated K+ channels. Phorbol myristate acetate partially inhibited Ins-1,4,5-P3 accumulation at all [BK] investigated, and the [Ca2+]i increase at [BK] less than 50 nM. In PC12 cells treated with maximal [BK] in the Ca2+-containing incubation medium, Ins-1,4,5-P3 peaked at 10 s, dropped to 20% of the peak at 30 s, and returned to basal within 5 min; the peak increase of Ins-1,3,4-P3 was slower and was variable from experiment to experiment, while Ins-P4 rose for 2 min, and remained elevated for many min thereafter. Meanwhile, influx of Ca2+ from the extracellular medium, plasma membrane depolarization (visible without delay when hyperpolarization was blocked), and increased plasma membrane conductance were noticed. Evidence is presented that these last three events (which were partially inhibited by phorbol myristate acetate at all [BK]) were due to the activation of a cation influx, which was much more persistent than the elevation of the two Ins-P3 isomers. Our results appear inconsistent with the possibility that in intact PC12 cells the BK-induced activation of cation influx is accounted for entirely by the increases of either Ins-1,3,4-P3 or Ins-1,4,5-P3 (alone or in combination with Ins-1,3,4,5-P4), as previously suggested by microinjection studies in different cell types

    The immunoglobulin-like domain of neuregulins potentiates ErbB3/HER3 activation and cellular proliferation

    Get PDF
    The neuregulins (NRGs) represent a large family of membrane-anchored growth factors, whose deregulation may contribute to the pathogenesis of several tumors. In fact, targeting of NRG-activated pathways has demonstrated clinical benefit. To improve the efficacy of anti-NRG therapies, it is essential to gain insights into the regions of NRGs that favor their pro-oncogenic properties. Here, we have addressed the protumorigenic impact of different NRG domains. To do this, deletion mutants affecting different NRG domains were expressed in 293 and MCF7 cells. Of the five forms studied, only the wild-type and a mutant lacking the Ig-like domain (NRGΔIg ) were properly sorted to the plasma membrane. Both forms were released as soluble forms to the culture media. However, the mutant NRGΔIg failed to efficiently activate HER2 and HER3 receptors, signaling pathways, and cell proliferation when compared to wild-type NRG. Treatment with trastuzumab, a humanized antibody used in the breast cancer clinic, inhibited the constitutive activation of HER2, HER3, and downstream signaling in MCF7 cells constitutively expressing wild-type NRG. In contrast, this treatment had a marginal effect on MCF7-NRGΔIg cells. This study demonstrates that the Ig-like region of NRGs exerts an important role in their capability to activate ErbB/HER receptors and mitogenic responses. Strategies aimed at targeting NRGs should consider that fact to improve neutralization of the pro-oncogenic properties of NRGs

    Immune Checkpoint Inhibitors and RAS–ERK Pathway-Targeted Drugs as Combined Therapy for the Treatment of Melanoma

    Get PDF
    Metastatic melanoma is a highly immunogenic tumor with very poor survival rates due to immune system escape-mechanisms. Immune checkpoint inhibitors (ICIs) targeting the cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and the programmed death-1 (PD1) receptors, are being used to impede immune evasion. This immunotherapy entails an increment in the overall survival rates. However, melanoma cells respond with evasive molecular mechanisms. ERK cascade inhibitors are also used in metastatic melanoma treatment, with the RAF activity blockade being the main therapeutic approach for such purpose, and in combination with MEK inhibitors improves many parameters of clinical efficacy. Despite their efficacy in inhibiting ERK signaling, the rewiring of the melanoma cell-signaling results in disease relapse, constituting the reinstatement of ERK activation, which is a common cause of some resistance mechanisms. Recent studies revealed that the combination of RAS-ERK pathway inhibitors and ICI therapy present promising advantages for metastatic melanoma treatment. Here, we present a recompilation of the combined therapies clinically evaluated in patients.Funding: PC lab is supported by grant PID2021-126288OB-I00 from the Spanish Ministry of Science (MICIU/AEI/FEDER, UE); PIE 202220E003 from Agencia Estatal Consejo Superior de Investigaciones Científicas; and CIBERONC from the Instituto de Salud Carlos III (ISCIII). AP: Spanish Ministry of Science (PID2020-115605RB-I00), CIBERONC, Junta de Castilla y León (CSI146P20), and the CRIS Cancer Foundation. Our labs receive support from the European Union Regional Development Funding Program (FEDER)
    corecore