14 research outputs found

    Chironomidae fauna of springs in Iceland – assessing the ecological relevance behind Tuxen’s spring classification

    Get PDF
    Publisher's version (útgefin grein)In 1937, S.L. Tuxen studied the animal community of hot springs in Iceland, and classified springs according to their relative temperature into cold, tepid, and hot. Eighty years after Tuxen’s study, we revisited some of the hot springs in Skagafjörður, Northern Iceland. Our aim was to compare the invertebrate community of 1937 and today, and to assess the stability of hot spring habitats over the years. To test Tuxen’s spring classification on an ecological basis, we furthermore collected chironomid larvae from 24 springs of a broad range of temperature, with samples taken both at the surface area of the spring and at the groundwater level. The chironomid species composition of hot springs differed from that of cold and tepid springs. Whereas Cricotopus sylvestris, Arctopelopia sp., and Procladius sp. characterised the chironomid community in Icelandic hot springs, cold and tepid springs were dominated by Eukiefferiella minor, Orthocladius frigidus and Diamesa spp. Community composition analyses and the exclusive occurrence of taxa in one of the temperature classes validated the ecological relevance of Tuxen’s spring classification for the chironomid species community. Both environmental parameters and invertebrate community of Icelandic hot springs seem to be the same as 80 years ago. Although springs have the potential to provide stable habitats, they are currently under high anthropogenic pressure, and should be increasingly considered in nature conservation.Icelandic Research Fund (RANNÍS), grant nr. 141863-051Peer Reviewe

    Bacterial diversity in Icelandic cold spring sources and in relation to the groundwater amphipod Crangonyx islandicus

    Get PDF
    Publisher's version (útgefin grein)Crangonyx islandicus is a groundwater amphipod endemic to Iceland, considered to have survived the Ice Ages in subglacial refugia. Currently the species is found in spring sources in lava fields along the tectonic plate boundary of the country. The discovery of a groundwater species in this inaccessible habitat indicates a hidden ecosystem possibly based on chemoautotrophic microorganisms as primary producers. To explore this spring ecosystem, we assessed its microbial diversity and analysed whether and how the diversity varied between the amphipods and the spring water, and if was dependent on environmental factors and geological settings. Isolated DNA from spring water and from amphipods was analysed using metabarcoding methods, targeting the 16S rRNA gene. Two genera of bacteria, Halomonas and Shewanella were dominating in the amphipod samples in terms of relative abundance, but not in the groundwater samples where Flavobacterium, Pseudomonas and Alkanindiges among others were dominating. The richness of the bacteria taxa in the microbial community of the groundwater spring sources was shaped by pH level and the beta diversity was shaped by geographic locations.This work was supported by the Icelandic Research Council [grant number: 130244-051 to SP and 141863-051 to BKK] and by the doctoral fund at the University of Iceland. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer Reviewe

    Shell morphology and color of the subtidal whelk Buccinum undatum exhibit fine-scaled spatial patterns

    Get PDF
    Publisher's version (útgefin grein)Geographical patterns in morphology can be the result of divergence among populations due to neutral or selective changes and/or phenotypic plasticity in response to different environments. Marine gastropods are ideal subjects on which to explore these patterns, by virtue of the remarkable intraspecific variation in life‐history traits and morphology often observed across relatively small spatial scales. The ubiquitous N‐Atlantic common whelk (Buccinum undatum) is well known for spatial variation in life‐history traits and morphology. Previous studies on genetic population structure have revealed that it exhibits significant differentiation across geographic distances. Within Breiðafjörður Bay, a large and shallow bay in W‐Iceland, genetic differentiation was demonstrated between whelks from sites separated by just 20 km. Here, we extended our previous studies on the common whelk in Breiðafjörður Bay by quantifying phenotypic variation in shell morphology and color throughout the Bay. We sought to test whether trait differentiation is dependent on geographic distance and/or environmental variability. Whelk in Breiðafjörður Bay displayed fine‐scale patterns of spatial variation in shape, thickness, and color diversity. Differentiation increased with increasing distance between populations, indicating that population connectivity is limited. Both shape and color varied along a gradient from the inner part of the bay in the east to the outer part in the west. Whelk shells in the innermost part of Breiðafjörður Bay were thick with an elongate shell, round aperture, and low color diversity, whereas in the outer part of the bay the shells were thinner, rounder, with a more elongate aperture and richer color diversity. Significant site‐specific difference in shell traits of the common whelk in correlation with environmental variables indicates the presence of local ecotypes and limited demographic connectivity.The project was funded by a research grant no. 141302051 from the Icelandic Centre for Research and a PhD grant from the University of Iceland Research Fund to Hildur Magnúsdóttir.Peer Reviewe

    The mitochondrial genome of common whelk Buccinum undatum (Neogastropoda: Buccinidae)

    Get PDF
    Publisher's version (útgefin grein)The complete mitogenome of Buccinum undatum obtained from transcriptome analysis is presented here. The mitogenome is 15,265 bp in length and comprises 13 protein-coding genes, 2 ribosomal subunit genes, and 22 transfer RNAs. The complete genome was used to perform a phylogenetic analysis together with other Buccinoidea representatives with mitogenome data from GenBank.This work is supported by the Icelandic Research Council, under grant number 141302051.Peer Reviewe

    A Drastic Reduction in the Life Span of Cystatin C L68Q Carriers Due to Life-Style Changes during the Last Two Centuries

    Get PDF
    Hereditary cystatin C amyloid angiopathy (HCCAA) is an autosomal dominant disease with high penetrance, manifest by brain hemorrhages in young normotensive adults. In Iceland, this condition is caused by the L68Q mutation in the cystatin C gene, with contemporary carriers reaching an average age of only 30 years. Here, we report, based both on linkage disequilibrium and genealogical evidence, that all known copies of this mutation derive from a common ancestor born roughly 18 generations ago. Intriguingly, the genealogies reveal that obligate L68Q carriers born 1825 to 1900 experienced a drastic reduction in life span, from 65 years to the present-day average. At the same time, a parent-of-origin effect emerged, whereby maternal inheritance of the mutation was associated with a 9 year reduction in life span relative to paternal inheritance. As these trends can be observed in several different extended families, many generations after the mutational event, it seems likely that some environmental factor is responsible, perhaps linked to radical changes in the life-style of Icelanders during this period. A mutation with such radically different phenotypic effects in reaction to normal variation in human life-style not only opens the possibility of preventive strategies for HCCAA, but it may also provide novel insights into the complex relationship between genotype and environment in human disease

    Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution

    Get PDF
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldWe recently described an association between risk of type 2diabetes and variants in the transcription factor 7-like 2 gene (TCF7L2; formerly TCF4), with a population attributable risk (PAR) of 17%-28% in three populations of European ancestry. Here, we refine the definition of the TCF7L2 type 2diabetes risk variant, HapB(T2D), to the ancestral T allele of a SNP, rs7903146, through replication in West African and Danish type 2 diabetes case-control studies and an expanded Icelandic study. We also identify another variant of the same gene, HapA, that shows evidence of positive selection in East Asian, European and West African populations. Notably, HapA shows a suggestive association with body mass index and altered concentrations of the hunger-satiety hormones ghrelin and leptin in males, indicating that the selective advantage of HapA may have been mediated through effects on energy metabolism

    The Impact of Divergence Time on the Nature of Population Structure: An Example from Iceland

    Get PDF
    The Icelandic population has been sampled in many disease association studies, providing a strong motivation to understand the structure of this population and its ramifications for disease gene mapping. Previous work using 40 microsatellites showed that the Icelandic population is relatively homogeneous, but exhibits subtle population structure that can bias disease association statistics. Here, we show that regional geographic ancestries of individuals from Iceland can be distinguished using 292,289 autosomal single-nucleotide polymorphisms (SNPs). We further show that subpopulation differences are due to genetic drift since the settlement of Iceland 1100 years ago, and not to varying contributions from different ancestral populations. A consequence of the recent origin of Icelandic population structure is that allele frequency differences follow a null distribution devoid of outliers, so that the risk of false positive associations due to stratification is minimal. Our results highlight an important distinction between population differences attributable to recent drift and those arising from more ancient divergence, which has implications both for association studies and for efforts to detect natural selection using population differentiation

    Data from: Mosaic structure of native ant supercolonies

    No full text
    According to the inclusive fitness theory, some degree of positive relatedness is required for the evolution and maintenance of altruism. However, ant colonies are sometimes large interconnected networks of nests which are genetically homogenous entities, causing a putative problem for the theory. We studied spatial structure and genetic relatedness in two supercolonies of the ant Formica exsecta, by using nuclear and mitochondrial markers. We show that there may be multiple pathways to supercolonial social organization leading to different spatial genetic structures. One supercolony formed a genetically homogenous population dominated by a single mtDNA haplotype, as expected if founded by a small number of colonizers, followed by nest propagation by budding and domination of the habitat patch. The other supercolony had several haplotypes and the spatial genetic structure was a mosaic of nuclear and mitochondrial clusters. Genetic diversity probably originated from long-range dispersal, and the mosaic population structure is likely a result of stochastic short-range dispersal of individuals. Such a mosaic spatial structure is apparently discordant with the current knowledge about the integrity of ant colonies. Relatedness was low in both populations when estimated among nestmates, but increased significantly when estimated among individuals sharing the same genetic cluster or haplogroup. The latter association indicates the important historical role of queen dispersal in the determination of the spatial genetic structure

    Seppa et al_dryad data

    No full text
    Genotypes of individual workers collected in the field + spatial coordinates of their nests. See the ReadMe fil
    corecore