267 research outputs found

    Primary breast lymphoma: a consideration in an HIV patient when a mass is discovered by screening mammography: a case report

    Get PDF
    Primary Breast lymphoma is a rare lesion that has been reported in patients without HIV. However, Primary Breast lymphoma occurring in a patient with HIV has rarely been reported despite the fact that HIV infection is known to increase the propensity to develop certain types of lymphoma. We report a case of an HIV patient with breast lymphoma that was discovered by screening mammography while presenting our argument for more cautionary management in this patient population

    Measurement of the Negative Muon Anomalous Magnetic Moment to 0.7 ppm

    Full text link
    The anomalous magnetic moment of the negative muon has been measured to a precision of 0.7 parts per million (ppm) at the Brookhaven Alternating Gradient Synchrotron. This result is based on data collected in 2001, and is over an order of magnitude more precise than the previous measurement of the negative muon. The result a_mu= 11 659 214(8)(3) \times 10^{-10} (0.7 ppm), where the first uncertainty is statistical and the second is sytematic, is consistend with previous measurements of the anomaly for the positive and negative muon. The average for the muon anomaly a_{mu}(exp) = 11 659 208(6) \times 10^{-10} (0.5ppm).Comment: 4 pages, 4 figures, submitted to Physical Review Letters, revised to reflect referee comments. Text further revised to reflect additional referee comments and a corrected Fig. 3 replaces the older versio

    Long-term psychosocial functioning after Ilizarov limb lengthening during childhood: 37 patients followed for 2–14 years

    Get PDF
    Background and purpose Few studies have been concerned with the patient's perception of the outcome of limb lengthening. We describe the psychological and social functioning after at least 2 years of follow-up in patients who had had a leg length discrepancy and who had undergone an Ilizarov limb lengthening procedure

    Predicting growth and curve progression in the individual patient with adolescent idiopathic scoliosis: design of a prospective longitudinal cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Scoliosis is present in 3-5% of the children in the adolescent age group, with a higher incidence in females. Treatment of adolescent idiopathic scoliosis is mainly dependent on the progression of the scoliotic curve. There is a close relationship between curve progression and rapid (spinal) growth of the patient during puberty. However, until present time no conclusive method was found for predicting the timing and magnitude of the pubertal growth spurt in total body height, or the curve progression of the idiopathic scoliosis.</p> <p>The goal of this study is to determine the predictive value of several maturity indicators that reflect growth or remaining growth potential, in order to predict timing of the peak growth velocity of total body height in the individual patient with adolescent idiopathic scoliosis. Furthermore, different parameters are evaluated for their correlation with curve progression in the individual scoliosis patient.</p> <p>Methods/design</p> <p>This prospective, longitudinal cohort study will be incorporated in the usual care of patients with adolescent idiopathic scoliosis. All new patients between 8 and 17 years with adolescent idiopathic scoliosis (Cobb angle >10 degrees) visiting the outpatient clinic of the University Medical Center Groningen are included in this study. Follow up will take place every 6 months. The present study will use a new ultra-low dose X-ray system which can make total body X-rays. Several maturity indicators are evaluated like different body length dimensions, secondary sexual characteristics, skeletal age in hand and wrist, skeletal age in the elbow, the Risser sign, the status of the triradiate cartilage, and EMG ratios of the paraspinal muscle activity.</p> <p>Correlations of all dimensions will be calculated in relationship to the timing of the pubertal growth spurt, and to the progression of the scoliotic curve. An algorithm will be made for the optimal treatment strategy in the individual patient with adolescent idiopathic scoliosis.</p> <p>Discussion</p> <p>This study will determine the value of many maturity indicators and will be useful as well for other clinicians treating children with disorders of growth. Since not all clinicians have access to the presented new 3D X-ray system or have the time to make EMG's, for example, all indicators will be correlated to the timing of the peak growth velocity of total body height and curve progression in idiopathic scoliosis. Therefore each clinician can chose which indicators can be used best in their practice.</p> <p>Trial registration number</p> <p>NTR2048</p

    Characterizing Complex Polysera Produced by Antigen-Specific Immunization through the Use of Affinity-Selected Mimotopes

    Get PDF
    BACKGROUND: Antigen-based (as opposed to whole organism) vaccines are actively being pursued for numerous indications. Even though different formulations may produce similar levels of total antigen-specific antibody, the composition of the antibody response can be quite distinct resulting in different levels of therapeutic activity. METHODOLOGY/PRINCIPAL FINDINGS: Using plasmid-based immunization against the proto-oncogene HER-2 as a model, we have demonstrated that affinity-selected epitope mimetics (mimotopes) can provide a defined signature of a polyclonal antibody response. Further, using novel computer algorithms that we have developed, these mimotopes can be used to predict epitope targets. CONCLUSIONS/SIGNIFICANCE: By combining our novel strategy with existing methods of epitope prediction based on physical properties of an individual protein, we believe that this method offers a robust method for characterizing the breadth of epitope-specificity within a specific polyserum. This strategy is useful as a tool for monitoring immunity following vaccination and can also be used to define relevant epitopes for the creation of novel vaccines

    First observations of separated atmospheric nu_mu and bar{nu-mu} events in the MINOS detector

    Get PDF
    The complete 5.4 kton MINOS far detector has been taking data since the beginning of August 2003 at a depth of 2070 meters water-equivalent in the Soudan mine, Minnesota. This paper presents the first MINOS observations of nuµ and [overline nu ]µ charged-current atmospheric neutrino interactions based on an exposure of 418 days. The ratio of upward- to downward-going events in the data is compared to the Monte Carlo expectation in the absence of neutrino oscillations, giving Rup/downdata/Rup/downMC=0.62-0.14+0.19(stat.)±0.02(sys.). An extended maximum likelihood analysis of the observed L/E distributions excludes the null hypothesis of no neutrino oscillations at the 98% confidence level. Using the curvature of the observed muons in the 1.3 T MINOS magnetic field nuµ and [overline nu ]µ interactions are separated. The ratio of [overline nu ]µ to nuµ events in the data is compared to the Monte Carlo expectation assuming neutrinos and antineutrinos oscillate in the same manner, giving R[overline nu ][sub mu]/nu[sub mu]data/R[overline nu ][sub mu]/nu[sub mu]MC=0.96-0.27+0.38(stat.)±0.15(sys.), where the errors are the statistical and systematic uncertainties. Although the statistics are limited, this is the first direct observation of atmospheric neutrino interactions separately for nuµ and [overline nu ]µ

    Industrial Systems Biology of Saccharomyces cerevisiae Enables Novel Succinic Acid Cell Factory.

    Get PDF
    Saccharomyces cerevisiae is the most well characterized eukaryote, the preferred microbial cell factory for the largest industrial biotechnology product (bioethanol), and a robust commerically compatible scaffold to be exploitted for diverse chemical production. Succinic acid is a highly sought after added-value chemical for which there is no native pre-disposition for production and accmulation in S. cerevisiae. The genome-scale metabolic network reconstruction of S. cerevisiae enabled in silico gene deletion predictions using an evolutionary programming method to couple biomass and succinate production. Glycine and serine, both essential amino acids required for biomass formation, are formed from both glycolytic and TCA cycle intermediates. Succinate formation results from the isocitrate lyase catalyzed conversion of isocitrate, and from the alpha-keto-glutarate dehydrogenase catalyzed conversion of alpha-keto-glutarate. Succinate is subsequently depleted by the succinate dehydrogenase complex. The metabolic engineering strategy identified included deletion of the primary succinate consuming reaction, Sdh3p, and interruption of glycolysis derived serine by deletion of 3-phosphoglycerate dehydrogenase, Ser3p/Ser33p. Pursuing these targets, a multi-gene deletion strain was constructed, and directed evolution with selection used to identify a succinate producing mutant. Physiological characterization coupled with integrated data analysis of transcriptome data in the metabolically engineered strain were used to identify 2nd-round metabolic engineering targets. The resulting strain represents a 30-fold improvement in succinate titer, and a 43-fold improvement in succinate yield on biomass, with only a 2.8-fold decrease in the specific growth rate compared to the reference strain. Intuitive genetic targets for either over-expression or interruption of succinate producing or consuming pathways, respectively, do not lead to increased succinate. Rather, we demonstrate how systems biology tools coupled with directed evolution and selection allows non-intuitive, rapid and substantial re-direction of carbon fluxes in S. cerevisiae, and hence show proof of concept that this is a potentially attractive cell factory for over-producing different platform chemicals
    corecore