10 research outputs found

    Asthma Friendly Pharmacies: A Model to Improve Communication and Collaboration among Pharmacists, Patients, and Healthcare Providers

    No full text
    Pharmacists, with expertise in optimizing drug therapy outcomes, are valuable components of the healthcare team and are becoming increasingly involved in public health efforts. Pharmacists and pharmacy technicians in diverse community pharmacy settings can implement a variety of asthma interventions when they are brief, supported by appropriate tools, and integrated into the workflow. The Asthma Friendly Pharmacy (AFP) model addresses the challenges of providing patient-focused care in a community pharmacy setting by offering education to pharmacists and pharmacy technicians on asthma-related pharmaceutical care services, such as identifying or resolving medication-related problems; educating patients about asthma and medication-related concepts; improving communication and strengthening relationships between pharmacists, patients, and other healthcare providers; and establishing higher expectations for the pharmacist’s role in patient care and public health efforts. This article describes the feasibility of the model in an urban community pharmacy setting and documents the interventions and communication activities promoted through the AFP model

    Changes in Pediatric Health-Related Quality of Life in Cystic Fibrosis After IV Antibiotic Treatment for Pulmonary Exacerbations

    No full text
    Intravenous (IV) antibiotic therapy for pulmonary exacerbations (PE) has been shown to improve pulmonary functioning for patients with cystic fibrosis (CF); however, little is known about its effects on pediatric health-related quality of life (HRQOL). This prospective study assessed the impact of IV treatment of a PE on generic and CF-specific HRQOL for children and adolescents with CF. Participants included 52 children and adolescents with CF experiencing a PE (M(age) = 13.6 years; 54% males; M(FEV(1%)) predicted = 58.8%). HRQOL, pulmonary functioning, and body mass index were assessed before and after IV antibiotic treatment. Results of this prospective, observational study indicated significant improvements on CFQ-R Respiratory (M(change score) = 11.7; 95% CI = 6.3–17.1; p < .0001) and Weight (M(change score) = 15.9; 95% CI = 7.9–23.8; p < .0001) scales. The CF-specific measure was more sensitive to changes in HRQOL than the generic instrument. These data suggest that CF-specific HRQOL improves with treatment for a PE with IV antibiotics. The noted statistically and clinically significant changes in the CFQ-respiratory scale indicate that the measure may be beneficial to pulmonary health care teams

    Pharmacokinetics and Pharmacodynamics of Antibacterials, Antifungals, and Antivirals Used Most Frequently in Neonates and Infants

    No full text
    Antimicrobials and antivirals are widely used in young infants and neonates. These patients have historically been largely excluded from clinical trials and, as a consequence, the pharmacokinetics and pharmacodynamics of commonly used antibacterials, antifungals, and antivirals are incompletely understood in this population. This review summarizes the current literature specific to neonates and infants regarding pharmacokinetic parameters and changes in neonatal development that affect antimicrobial and antiviral pharmacodynamics. Specific drug classes addressed include aminoglycosides, aminopenicillins, cephalosporins, glycopeptides, azole antifungals, echinocandins, polyenes, and guanosine analogs. Within each drug class, the pharmacodynamics, pharmacokinetics, and clinical implications and future directions for prototypical agents are discussed. β-Lactam antibacterial activity is maximized when the plasma concentration exceeds the minimum inhibitory concentration for a prolonged period, suggesting that more frequent dosing may optimize β-lactam therapy. Aminoglycosides are typically administered at longer intervals with larger doses in order to maximize exposure (i.e., area under the plasma concentration–time curve) with gestational age and weight strongly influencing the pharmacokinetic profile. Nonetheless, safety concerns necessitate therapeutic drug monitoring across the entire neonatal and young infant spectrum. Vancomycin, representing the glycopeptide class of antibacterials, has a long history of clinical utility, yet there is still uncertainty about the optimal pharmacodynamic index in neonates and young infants. The high degree of pharmacokinetic variability in this population makes therapeutic drug monitoring essential to ensure adequate therapeutic exposure. Among neonates treated with the triazole agent fluconazole, it has been speculated that loading doses may improve pharmacodynamic target attainment rates. The use of voriconazole necessitates therapeutic drug monitoring and dose adjustments for patients with hepatic dysfunction. Neonates treated with lipid-based formulations of the polyene amphotericin B may be at an increased risk of death, such that alternative antifungal agents should be considered for neonates with invasive fungal infections. Alternative antifungal agents such as micafungin and caspofungin also exhibit unique pharmacokinetic considerations in this population. Neonates rapidly eliminate micafungin and require nearly three times the normal adult dose to achieve comparable levels of systemic exposure. Conversely, peak caspofungin concentrations have been reported to be similar among neonates and adults. However, both of these drugs feature favorable safety profiles. Recent studies with acyclovir have suggested that current dosing regimens may not result in therapeutic central nervous system concentrations and more frequent dosing may be required for neonates at later postmenstrual ages. Though ganciclovir and valganciclovir demonstrate excellent activity against cytomegalovirus, they are associated with significant neutropenia. In summary, many pharmacokinetic and pharmacodynamic studies have been conducted in this vulnerable population; however, there are also substantial gaps in our knowledge that require further investigation. These studies will be invaluable in determining optimal neonatal dosing regimens that have the potential to improve clinical outcomes and decrease adverse effects associated with antimicrobial and antiviral treatments

    Notes for genera – Ascomycota

    No full text
    Knowledge of the relationships and thus the classification of fungi, has developed rapidly with increasingly widespread use of molecular techniques, over the past 10--15 years, and continues to accelerate. Several genera have been found to be polyphyletic, and their generic concepts have subsequently been emended. New names have thus been introduced for species which are phylogenetically distinct from the type species of particular genera. The ending of the separate naming of morphs of the same species in 2011, has also caused changes in fungal generic names. In order to facilitate access to all important changes, it was desirable to compile these in a single document. The present article provides a list of generic names of Ascomycota (approximately 6500 accepted names published to the end of 2016), including those which are lichen-forming. Notes and summaries of the changes since the last edition of `Ainsworth Bisby's Dictionary of the Fungi' in 2008 are provided. The notes include the number of accepted species, classification, type species (with location of the type material), culture availability, life-styles, distribution, and selected publications that have appeared since 2008. This work is intended to provide the foundation for updating the ascomycete component of the ``Without prejudice list of generic names of Fungi'' published in 2013, which will be developed into a list of protected generic names. This will be subjected to the XIXth International Botanical Congress in Shenzhen in July 2017 agreeing to a modification in the rules relating to protected lists, and scrutiny by procedures determined by the Nomenclature Committee for Fungi (NCF). The previously invalidly published generic names Barriopsis, Collophora (as Collophorina), Cryomyces, Dematiopleospora, Heterospora (as Heterosporicola), Lithophila, Palmomyces (as Palmaria) and Saxomyces are validated, as are two previously invalid family names, Bartaliniaceae and Wiesneriomycetaceae. Four species of Lalaria, which were invalidly published are transferred to Taphrina and validated as new combinations. Catenomycopsis Tibell Constant. is reduced under Chaenothecopsis Vain., while Dichomera Cooke is reduced under Botryosphaeria Ces. De Not. (Art. 59)
    corecore