77 research outputs found

    Physical and land-cover variables influence ant functional groups and species diversity along elevational gradients

    Get PDF
    Of particular importance in shaping species assemblages is the spatial heterogeneity of the environment. The aim of our study was to investigate the influence of spatial heterogeneity and environmental complexity on the distribution of ant functional groups and species diversity along altitudinal gradients in a temperate ecosystem (Pyrenees Mountains). During three summers, we sampled 20 sites distributed across two Pyrenean valleys ranging in altitude from 1,009 to 2,339 m by using pitfall traps and hand collection. The environment around each sampling points was characterized by using both physical and land-cover variables. We then used a self-organizing map algorithm (SOM, neural network) to detect and characterize the relationship between the spatial distribution of ant functional groups, species diversity, and the variables measured. The use of SOM allowed us to reduce the apparent complexity of the environment to five clusters that highlighted two main gradients: an altitudinal gradient and a gradient of environmental closure. The composition of ant functional groups and species diversity changed along both of these gradients and was differently affected by environmental variables. The SOM also allowed us to validate the contours of most ant functional groups by highlighting the response of these groups to the environmental and land-cover variables

    Landscape history, time lags and drivers of change : urban natural grassland remnants in Potchefstroom, South Africa

    Get PDF
    The history of the landscape directly affects biotic assemblages, resulting in time lags in species response to disturbances. In highly fragmented environments, this phenomenon often causes extinction debts. However, few studies have been carried out in urban settings. To determine if there are time lags in the response of temperate natural grasslands to urbanization. Does it differ for indigenous species and for species indicative of disturbance and between woody and open grasslands? Do these time lags change over time? What are the potential landscape factors driving these changes? What are the corresponding vegetation changes? In 1995 and 2012 vegetation sampling was carried out in 43 urban grassland sites. We calculated six urbanization and landscape measures in a 500 m buffer area surrounding each site for 1938, 1961, 1970, 1994, 1999, 2006, and 2010. We used generalized linear models and model selection to determine which time period best predicted the contemporary species richness patterns. Woody grasslands showed time lags of 20-40 years. Contemporary open grassland communities were, generally, associated with more contemporary landscapes. Altitude and road network density of natural areas were the most frequent predictors of species richness. The importance of the predictors changed between the different models. Species richness, specifically, indigenous herbaceous species, declined from 1995 to 2012. The history of urbanization affects contemporary urban vegetation assemblages. This indicates potential extinction debts, which have important consequences for biodiversity conservation planning and sustainable future scenarios.Peer reviewe

    Breaking Functional Connectivity into Components: A Novel Approach Using an Individual-Based Model, and First Outcomes

    Get PDF
    Landscape connectivity is a key factor determining the viability of populations in fragmented landscapes. Predicting ‘functional connectivity’, namely whether a patch or a landscape functions as connected from the perspective of a focal species, poses various challenges. First, empirical data on the movement behaviour of species is often scarce. Second, animal-landscape interactions are bound to yield complex patterns. Lastly, functional connectivity involves various components that are rarely assessed separately. We introduce the spatially explicit, individual-based model FunCon as means to distinguish between components of functional connectivity and to assess how each of them affects the sensitivity of species and communities to landscape structures. We then present the results of exploratory simulations over six landscapes of different fragmentation levels and across a range of hypothetical bird species that differ in their response to habitat edges. i) Our results demonstrate that estimations of functional connectivity depend not only on the response of species to edges (avoidance versus penetration into the matrix), the movement mode investigated (home range movements versus dispersal), and the way in which the matrix is being crossed (random walk versus gap crossing), but also on the choice of connectivity measure (in this case, the model output examined). ii) We further show a strong effect of the mortality scenario applied, indicating that movement decisions that do not fully match the mortality risks are likely to reduce connectivity and enhance sensitivity to fragmentation. iii) Despite these complexities, some consistent patterns emerged. For instance, the ranking order of landscapes in terms of functional connectivity was mostly consistent across the entire range of hypothetical species, indicating that simple landscape indices can potentially serve as valuable surrogates for functional connectivity. Yet such simplifications must be carefully evaluated in terms of the components of functional connectivity they actually predict
    corecore