1,109 research outputs found

    Control strategy and performance of a small-size thermally integrated Carnot battery based on a Rankine cycle and combined with district heating

    Get PDF
    To encourage decarbonization and promote a widespread penetration of renewable energy sources in all energy sectors, the development of efficient energy storage systems is essential. Interesting grid-scale electricity storage technologies are the Carnot batteries, whose working principle is based on storing electricity in the form of thermal energy. The charging phase is performed through a heat pump cycle, and the discharging phase is conducted through a heat engine. Since both thermal and electric energy flows are involved, Carnot batteries can be adopted to provide more flexibility in heat and power energy systems. To this aim, efficient scheduling strategies are necessary to manage different energy flows. In this context, this work presents a detailed rule-based control strategy to schedule the synergetic work of a 10-kWe reversible heat pump/organic Rankine cycle Carnot battery integrated to a district heating substation and a photovoltaic power plant, to satisfy a local user's thermal and electric demand. The coupling of a Carnot battery with a district heating substation allows for shaving the thermal demand peaks through the thermal energy stored in the Carnot battery storage, allowing for a downsizing of the district heating substation, with a considerable reduction of the investment costs. Due to the multiplicity of the involved energy flows and the numerous modes of operation, a scheduling logic for the Carnot battery has been developed, to minimize the system operating costs, depending on the boundary conditions. To investigate the influence of the main system design parameters, a detailed and accurate model of the Carnot battery is adopted. Two variants of the reference system, with different heat pump cold source arrangements, are investigated. In the first case, the heat pump absorbs thermal energy from free waste heat. In the second case, the heat pump cold source is the return branch of the district heating substation. The simulation results show that, in the first case, the Carnot battery allows the downsizing of the district heating substation by 47 %, resulting in an annual gain of more than 5000 €. About 70 % of the economic benefit is due to the possibility of reducing the power size of the district heating substation, which can be from 300 to more than 500 kW. The payback period is estimated to be lower than 9 years, while in the second case, the Carnot battery is not able to provide a gain. Eventually, the influence of some parameters, such as the photovoltaic power plant surface, the storage volume, the electricity price profile and the reversible heat pump/organic Rankine cycle specific investment cost, on the techno-economic performance of the system, is investigated through a wide sensitivity analysis. According to the results, the photovoltaic panels surface does not significantly affect the economic gain, while the storage capacity strongly affects the system scheduling and the operating costs. Indeed, it is possible to identify that 13 m3 is the size of the storage volume that minimizes the payback period to 8.22 years, for the considered application. An increase in the electricity price without an increase in the thermal energy price leads to a decrease in economic gain because the benefit brought by the downsizing of district heating is less significant on the economic balance. The specific investment cost of the reversible heat pump/organic Rankine cycle does not influence the operating cost; thus, it does not change the Carnot battery management, nor the economic gain. The specific investment cost affects the payback period, which increases from 8.6 years for a specific cost of 2000 €/kWe to 15.7 years for a specific cost of 5000 €/kWe

    Depth profile investigations of surface modifications of limestone artifacts by laser-induced breakdown spectroscopy.

    Get PDF
    Made available in DSpace on 2017-11-01T23:23:05Z (GMT). No. of bitstreams: 1 PROCI17Depthprofileinvestigations....pdf: 1977315 bytes, checksum: f46ba065d28554ead651738267cea5a4 (MD5) Previous issue date: 2017-10-30bitstream/item/165807/1/PROCI-17-Depth-profile-investigations....pd

    Muon Simulations for Super-Kamiokande, KamLAND and CHOOZ

    Full text link
    Muon backgrounds at Super-Kamiokande, KamLAND and CHOOZ are calculated using MUSIC. A modified version of the Gaisser sea level muon distribution and a well-tested Monte Carlo integration method are introduced. Average muon energy, flux and rate are tabulated. Plots of average energy and angular distributions are given. Implications on muon tracker design for future experiments are discussed.Comment: Revtex4 33 pages, 16 figures and 4 table

    The BaR-SPOrt Experiment

    Get PDF
    BaR-SPOrt (Balloon-borne Radiometers for Sky Polarisation Observations) is an experiment to measure the linearly polarized emission of sky patches at 32 and 90 GHz with sub-degree angular resolution. It is equipped with high sensitivity correlation polarimeters for simultaneous detection of both the U and Q stokes parameters of the incident radiation. On-axis telescope is used to observe angular scales where the expected polarization of the Cosmic Microwave Background (CMBP) peaks. This project shares most of the know-how and sophisticated technology developed for the SPOrt experiment onboard the International Space Station. The payload is designed to flight onboard long duration stratospheric balloons both in the Northern and Southern hemispheres where low foreground emission sky patches are accessible. Due to the weakness of the expected CMBP signal (in the range of microK), much care has been spent to optimize the instrument design with respect to the systematics generation, observing time efficiency and long term stability. In this contribution we present the instrument design, and first tests on some components of the 32 GHz radiometer.Comment: 12 pages, 10 figures, Astronomical Telescopes and Instrumentation (Polaimetry in Astronomy) Hawaii August 2002 SPIE Meetin

    The ESA "Plasma Laboratory in Space" study

    Get PDF
    The European Space Agency has initiated, in the context of its General Studies Programme, a study of the possible use of space for studies in pure and applied plasma physics, in areas not traditionally covered by “space plasma physics”. A team of experts has been set-up to review a broad range of area including industrial plasma physics and pure plasma physics, astrophysical and solar-terrestrial areas. A set of experiments have been identified that can potentially provide access to new phenomena and to allow advances in several fields of plasma science. These experiments concern phenomena on spatial scale (102 to104 m) intermediate between what is achievable on ground experiment and usual solar system plasma observations

    Two years of flight of the Pamela experiment: results and perspectives

    Full text link
    PAMELA is a satellite borne experiment designed to study with great accuracy cosmic rays of galactic, solar, and trapped nature in a wide energy range (protons: 80 MeV-700 GeV, electrons 50 MeV-400 GeV). Main objective is the study of the antimatter component: antiprotons (80 MeV-190 GeV), positrons (50 MeV-270 GeV) and search for antinuclei with a precision of the order of 10810^{-8}). The experiment, housed on board the Russian Resurs-DK1 satellite, was launched on June, 15th15^{th} 2006 in a 350×600km350\times 600 km orbit with an inclination of 70 degrees. In this work we describe the scientific objectives and the performance of PAMELA in its first two years of operation. Data on protons of trapped, secondary and galactic nature - as well as measurements of the December 13th13^{th} 2006 Solar Particle Event - are also provided.Comment: To appear on J. Phys. Soc. Jpn. as part of the proceedings of the International Workshop on Advances in Cosmic Ray Science March, 17-19, 2008 Waseda University, Shinjuku, Tokyo, Japa

    Non-parametric deprojection of NIKA SZ observations: Pressure distribution in the Planck-discovered cluster PSZ1 G045.85+57.71

    Get PDF
    The determination of the thermodynamic properties of clusters of galaxies at intermediate and high redshift can bring new insights into the formation of large-scale structures. It is essential for a robust calibration of the mass-observable scaling relations and their scatter, which are key ingredients for precise cosmology using cluster statistics. Here we illustrate an application of high resolution (<20(< 20 arcsec) thermal Sunyaev-Zel'dovich (tSZ) observations by probing the intracluster medium (ICM) of the \planck-discovered galaxy cluster \psz\ at redshift z=0.61z = 0.61, using tSZ data obtained with the NIKA camera, which is a dual-band (150 and 260~GHz) instrument operated at the IRAM 30-meter telescope. We deproject jointly NIKA and \planck\ data to extract the electronic pressure distribution from the cluster core (R0.02R500R \sim 0.02\, R_{500}) to its outskirts (R3R500R \sim 3\, R_{500}) non-parametrically for the first time at intermediate redshift. The constraints on the resulting pressure profile allow us to reduce the relative uncertainty on the integrated Compton parameter by a factor of two compared to the \planck\ value. Combining the tSZ data and the deprojected electronic density profile from \xmm\ allows us to undertake a hydrostatic mass analysis, for which we study the impact of a spherical model assumption on the total mass estimate. We also investigate the radial temperature and entropy distributions. These data indicate that \psz\ is a massive (M5005.5×1014M_{500} \sim 5.5 \times 10^{14} M_{\odot}) cool-core cluster. This work is part of a pilot study aiming at optimizing the treatment of the NIKA2 tSZ large program dedicated to the follow-up of SZ-discovered clusters at intermediate and high redshifts. (abridged)Comment: 16 pages, 10 figure

    PAMELA results on the cosmic-ray antiproton flux from 60 MeV to 180 GeV in kinetic energy

    Full text link
    The satellite-borne experiment PAMELA has been used to make a new measurement of the cosmic-ray antiproton flux and the antiproton-to-proton flux ratio which extends previously published measurements down to 60 MeV and up to 180 GeV in kinetic energy. During 850 days of data acquisition approximately 1500 antiprotons were observed. The measurements are consistent with purely secondary production of antiprotons in the galaxy. More precise secondary production models are required for a complete interpretation of the results.Comment: 11 pages, 3 figures, 1 table. Accepted for publication in Physical Review Letter
    corecore