3,073 research outputs found
Comparison of electromagnetic wave sensors with optical and low-frequency spectroscopy methods for real-time monitoring of lead concentrations in mine water
The feasibility of using novel electromagnetic wave sensors for real-time monitoring of metal pollution in water was assessed. Five solutions with different concentrations of lead (0, 1, 10, 50, 100 mg/L) were measured using several sensing methods: UV-Vis spectroscopy, low frequency capacitance and resistance measurements, and two sensing systems based on microwave technology. With this last approach, two sensing devices were used: a resonant cavity and a planar sensor with gold interdigitated electrode design printed on a PTFE substrate with a protective PCB lacquer coating. Results confirmed the ability of these systems to quantify the lead concentration as changes in spectrum signal at specific frequencies of the electromagnetic spectrum. Spectra were unique, with clearly observed shifts in the resonant frequencies of the sensors when placed in direct contact with different lead solutions, demonstrating the possibility of continuous monitoring with great sensitivity, selectivity, and high spatial and temporal resolution. Consequently, determination of trace and toxic metals using microwave spectroscopy is a promising alternative to traditional grab-sampling and laboratory based analyses. On-line and continuous monitoring of real-time metal concentrations offers the potential for a more effective emergency response and the platform for better scientific understanding and remediation of contaminated mine drainage
A New Differential Positioning Method using Modulation Correlation of Signals of Opportunity
Global Navigation Satellite Systems (GNSS) have become the positioning systems of choice for many applications. However, GNSS signals are susceptible to obstruction, interference and jamming. Therefore, to maximize robustness and integrity, it is necessary to employ a dissimilar positioning technology that can operate independently and back-up GNSS. One such technology exploits 'signals of opportunity' - signals that are designed for purposes other than navigation.This paper presents a system that uses amplitude modulation (AM) radio broadcasts in the medium frequency (MF) band. At these frequencies, the predominant ground-wave propagation mode offers better coverage in remote areas and over sea than is achievable with higher frequency signals.The system is differential and operates by correlating modulation information between the reference and user receivers. A system of this form mitigates the deterioration in and around buildings encountered in prior systems and can provide absolute position using fewer signals than a system using only carrier phase.The system presented in this paper uses generalized cross correlation to obtain time difference of arrival measurements that are subsequently used for position determination. Preliminary results indicate the system provides a robust position solution. Moreover, the system offers the potential to be combined with carrier phase measurements to achieve enhanced performance, while the modulation correlation technique is readily extendable to other types of signal
A Differential Positioning System Using Modulation Correlation of Signals of Opportunity
Global Navigation Satellite Systems (GNSS) have become the positioning systems of choice for many applications. However, GNSS signals are susceptible to obstruction, interference and jamming. Therefore, to maximize robustness and integrity, it is necessary to employ a dissimilar positioning technology that can operate independently and back-up GNSS. One such technology exploits ‘signals of opportunity’ – signals that are designed for purposes other than navigation. This paper presents a system that uses amplitude modulation (AM) radio broadcasts in the medium frequency (MF) band. At these frequencies, the predominant ground-wave propagation mode offers better coverage in remote areas and over sea than is achievable with higher frequency signals. The system is differential and operates by correlating modulation information between the reference and user receivers. A system of this form mitigates the deterioration in and around buildings encountered in prior systems and can provide absolute position using fewer signals than a system using only carrier phase. The system presented in this paper uses generalized cross correlation to obtain time difference of arrival measurements that are subsequently used for position determination. Preliminary results indicate the system provides a robust position solution. Moreover, the system offers the potential to be combined with carrier phase measurements to achieve enhanced performance, while the modulation correlation technique is readily extendable to other types of signal
Real-Time Water Quality Monitoring with Chemical Sensors
Water quality is one of the most critical indicators of environmental pollution and it affects all of us. Water contamination can be accidental or intentional and the consequences are drastic unless the appropriate measures are adopted on the spot. This review provides a critical assessment of the applicability of various technologies for real-time water quality monitoring, focusing on those that have been reportedly tested in real-life scenarios. Specifically, the performance of sensors based on molecularly imprinted polymers is evaluated in detail, also giving insights into their principle of operation, stability in real on-site applications and mass production options. Such characteristics as sensing range and limit of detection are given for the most promising systems, that were verified outside of laboratory conditions. Then, novel trends of using microwave spectroscopy and chemical materials integration for achieving a higher sensitivity to and selectivity of pollutants in water are described
A low balance between microparticles expressing tissue factor pathway inhibitor and tissue factor is associated with thrombosis in Behçet’s Syndrome
Thrombosis is common in Behçet’s Syndrome (BS), and there is a need for better biomarkers for risk assessment. As microparticles expressing Tissue Factor (TF) can contribute to thrombosis in preclinical models, we investigated whether plasma microparticles expressing Tissue Factor (TF) are increased in BS. We compared blood plasma from 72 healthy controls with that from 88 BS patients (21 with a history of thrombosis (Th+) and 67 without (Th−). Using flow cytometry, we found that the total plasma MP numbers were increased in BS compared to HC, as were MPs expressing TF and Tissue Factor Pathway Inhibitor (TFPI) (all p 0.7 had a history of clinical thrombosis. We conclude that TF-expressing MP are increased in BS and that an imbalance between microparticulate TF and TFPI may predispose to thrombosis
Functionalised microwave sensors for real-time monitoring of copper and zinc concentration in mining-impacted water
Microwave spectroscopy has been identified as a novel and inexpensive method for the monitoring of water pollutants. Integrating microwave sensors with developed coatings is a novel strategy to make the sensing system more specific for a target contaminant. This study describes the determination of copper and zinc concentration in water in both lab-prepared and acquired mine-water samples from two abandoned mining areas in Wales, UK. Uncoated sensors immersed in samples spiked with 1.25 mg/L concentrations of copper and zinc, using the standard addition method, were able to quantify the concentration at 0.44 GHz with a strong linear correlation (R2=0.99) for the reflection coefficient magnitude (|S11|). Functionalised microwave sensors with l-cysteine, chitosan and bismuth-zinc-cobalt oxide based coatings have shown improvement in the sensing performance. Specifically, the linear correlation at 0.91-1.00 GHz between |S11| and a polluted sample spiked with Cu showed a higher R2 (=0.98), sensitivity (1.65ΔdB/mg/L) and quality factor (135) compared with uncoated sensors (R2=0.88, sensitivity of 0.82 ΔdB/mg/L and Q-factor 30.7). A Lorentzian-peak fitting function was applied for performing advanced multiple peak analysis and identifying the changes in the resonant frequency peaks which are related to the change in metal ion content. This novel sensor platform offers the possibility of in situ monitoring of toxic metal concentrations in mining-impacted water and multiple peak features, such as area, full-width half maximum, centre, and height of the peaks have the possibility to offer higher specificity for similar toxic metals, as between copper and zinc ions
Screen-Printed f-EM Sensors based on two chelating-polymers and a metal oxide for the continuous detection of Cu ions in surface water
Pollutants affect water worldwide and consequently present a risk to both the environment and to human health. Cu is an essential element for many organisms, but becomes toxic at relatively high concentrations. Current laboratory-based methods are not able to monitor water quality continuously, as they require laborious sampling and offline monitoring. A potential method that is capable to addressing this problem, guaranteeing the continuous monitoring of water resources, is the integration of microwave spectroscopy with functionalised electromagnetic (f-EM) sensors. The feasibility of using this combined method for achieving a more specific response toward low concentrations of Cu has been demonstrated
Detection of Zn in water using novel functionalised planar microwave sensors
Metal pollution in aquatic environments has attracted global attention. Current methods are not able to monitor water quality in-situ at low-cost. This paper reports on a novel approach for detecting changes in the concentration of zinc in water using electrical and a microwave sensor method, adopting two planar sensors: one was functionalised with a screen-printed β-Bi2O3 based coating, while the other was uncoated. Results show that both electrical and the microwave sensor responses were dependent on the presence and concentration of Zn in water with R2 = 0.93-0.99. The functionalised sensor with a 60 μm thick β-Bi2O3 based film offers improved performance compared with both uncoated and functionalised sensors with 40 μm thick coating for detecting the changes of Zn concentrations in water for low levels (100 and 500 μg/L). This novel sensing system could be a cost-effective alternative to the current offline methods
Sprouty2 mediated tuning of signalling is essential for somite myogenesis
Background: Negative regulators of signal transduction cascades play critical roles in controlling different aspects of normal embryonic development. Sprouty2 (Spry2) negatively regulates receptor tyrosine kinases (RTK) and FGF signalling and is important in differentiation, cell migration and proliferation. In vertebrate embryos, Spry2 is expressed in paraxial mesoderm and in forming somites. Expression is maintained in the myotome until late stages of somite differentiation. However, its role and mode of action during somite myogenesis is still unclear. Results: Here, we analysed chick Spry2 expression and showed that it overlaps with that of myogenic regulatory factors MyoD and Mgn. Targeted mis-expression of Spry2 led to inhibition of myogenesis, whilst its C-terminal domain led to an increased number of myogenic cells by stimulating cell proliferation. Conclusions: Spry2 is expressed in somite myotomes and its expression overlaps with myogenic regulatory factors. Overexpression and dominant-negative interference showed that Spry2 plays a crucial role in regulating chick myogenesis by fine tuning of FGF signaling through a negative feedback loop. We also propose that mir-23, mir-27 and mir-128 could be part of the negative feedback loop mechanism. Our analysis is the first to shed some light on in vivo Spry2 function during chick somite myogenesis
Short-duration accretion states of Polars as seen in TESS and ZTF data
Polars are highly magnetic cataclysmic variables which have been long observed to have both high and low brightness states. The duration of these states has been previously seen to vary from a number of days up to years. Despite this, these states and their physical origin have not been explained in a consistent manner. We present observations of the shortest duration states of a number of Polars observed by ZTF and TESS. This has allowed us to determine that short-duration states are a relatively common feature across the population of Polars. Furthermore, we have been able to generalize the model of star-spot migration to explain both short-lived high and low states in Polars by incorporating the interaction between the magnetic field of the white dwarf and that of the star spots
- …