158 research outputs found
Thermalization and pinch singularities in non-equilibrium quantum field theory
I argue that, within the Closed-Time-Path formalism, pinch singularities do
not appear in truly out of equilibrium situations.Comment: 9 pages, plain TEX, no figures (TEX mistakes corrected
Narrow Resonances in Effective Field Theory
We discuss the power counting for effective field theories with narrow
resonances near a two-body threshold. Close to threshold, the effective field
theory is perturbative and only one combination of coupling constants is
fine-tuned. In the vicinity of the resonance, a second, ``kinematic''
fine-tuning requires a nonperturbative resummation. We illustrate our results
in the case of nucleon-alpha scattering.Comment: 11 pages, revtex4, 3 ps figure
More on the infrared renormalization group limit cycle in QCD
We present a detailed study of the recently conjectured infrared
renormalization group limit cycle in QCD using chiral effective field theory.
It was conjectured that small increases in the up and down quark masses can
move QCD to the critical trajectory for an infrared limit cycle in the
three-nucleon system. At the critical quark masses, the binding energies of the
deuteron and its spin-singlet partner are tuned to zero and the triton has
infinitely many excited states with an accumulation point at the three-nucleon
threshold. We exemplify three parameter sets where this effect occurs at
next-to-leading order in the chiral counting. For one of them, we study the
structure of the three-nucleon system in detail using both chiral and contact
effective field theories. Furthermore, we investigate the matching of the
chiral and contact theories in the critical region and calculate the influence
of the limit cycle on three-nucleon scattering observables.Comment: 17 pages, 7 figures, discussion improved, results unchanged, version
to appear in EPJ
Nucleon-Deuteron Scattering from an Effective Field Theory
We use an effective field theory to compute low-energy nucleon-deuteron
scattering. We obtain the quartet scattering length using low energy constants
entirely determined from low-energy nucleon-nucleon scattering. We find
fm, to be compared to fm.Comment: 8 pages, Latex, epsfig, figures include
Causality bounds for neutron-proton scattering
We consider the constraints of causality and unitarity for the low-energy
interactions of protons and neutrons. We derive a general theorem that
non-vanishing partial-wave mixing cannot be reproduced with zero-range
interactions without violating causality or unitarity. We define and calculate
interaction length scales which we call the causal range and the Cauchy-Schwarz
range for all spin channels up to J = 3. For some channels we find that these
length scales are as large as 5 fm. We investigate the origin of these large
lengths and discuss their significance for the choice of momentum cutoff scales
in effective field theory and universality in many-body Fermi systems.Comment: 36 pages, 10 figures, 7 tables, version to appear in Eur. Phys. J.
Singular Potentials and Limit Cycles
We show that a central singular potential (with ) is
renormalized by a one-parameter square-well counterterm; low-energy observables
are made independent of the square-well width by adjusting the square-well
strength. We find a closed form expression for the renormalization-group
evolution of the square-well counterterm.Comment: 15 pages LaTex, 5 eps figures, error in figures and text correcte
A renormalisation group approach to two-body scattering in the presence of long-range forces
We apply renormalisation-group methods to two-body scattering by a
combination of known long-range and unknown short-range potentials. We impose a
cut-off in the basis of distorted waves of the long-range potential and
identify possible fixed points of the short-range potential as this cut-off is
lowered to zero. The expansions around these fixed points define the power
countings for the corresponding effective field theories. Expansions around
nontrivial fixed points are shown to correspond to distorted-wave versions of
the effective-range expansion. These methods are applied to scattering in the
presence of Coulomb, Yukawa and repulsive inverse-square potentials.Comment: 22 pages (RevTeX), 4 figure
Local realizations of contact interactions in two- and three-body problems
Mathematically rigorous theory of the two-body contact interaction in three
dimension is reviewed. Local potential realizations of this proper contact
interaction are given in terms of Poschl-Teller, exponential and square-well
potentials. Three body calculation is carried out for the halo nucleus 11Li
using adequately represented contact interaction.Comment: submitted to Phys. Rev.
On Parity-Violating Three-Nucleon Interactions and the Predictive Power of Few-Nucleon EFT at Very Low Energies
We address the typical strengths of hadronic parity-violating three-nucleon
interactions in "pion-less" Effective Field Theory in the nucleon-deuteron
(iso-doublet) system. By analysing the superficial degree of divergence of loop
diagrams, we conclude that no such interactions are needed at leading order.
The only two linearly independent parity-violating three-nucleon structures
with one derivative mix two-S and two-P-half waves with iso-spin transitions
Delta I = 0 or 1. Due to their structure, they cannot absorb any divergence
ostensibly appearing at next-to-leading order. This observation is based on the
approximate realisation of Wigner's combined SU(4) spin-isospin symmetry in the
two-nucleon system, even when effective-range corrections are included.
Parity-violating three-nucleon interactions thus only appear beyond
next-to-leading order. This guarantees renormalisability of the theory to that
order without introducing new, unknown coupling constants and allows the direct
extraction of parity-violating two-nucleon interactions from three-nucleon
experiments.Comment: 20 pages LaTeX2e, including 9 figures as .eps file embedded with
includegraphicx. Minor modifications and stylistic corrections. Version
accepted for publication in Eur. Phys. J.
Universal Equation for Efimov States
Efimov states are a sequence of shallow 3-body bound states that arise when
the 2-body scattering length is large. Efimov showed that the binding energies
of these states can be calculated in terms of the scattering length and a
3-body parameter by solving a transcendental equation involving a universal
function of one variable. We calculate this universal function using effective
field theory and use it to describe the three-body system of 4He atoms. We also
extend Efimov's theory to include the effects of deep 2-body bound states,
which give widths to the Efimov states.Comment: 8 pages, revtex4, 2 ps figures, table with numerical values of
universal function adde
- …
