7,321 research outputs found

    Continuous hydroponic wheat production using a recirculating system

    Get PDF
    Continuous crop production, where plants of various ages are growing simultaneously in a single recirculating nutrient solution, is a possible alternative to batch production in a Controlled Ecological Life Support System. A study was conducted at John F. Kennedy Space Center where 8 trays (0.24 sq m per tray) of Triticum aestivum L. Yecora Rojo were grown simultaneously in a growth chamber at 23 C, 65 percent relative humidity, 1000 ppm CO2, continuous light, with a continuous flow, thin film nutrient delivery system. The same modified Hoagland nutrient solution was recirculated through the plant trays from an 80 L reservoir throughout the study. It was maintained by periodic addition of water and nutrients based on chemical analyses of the solution. The study was conducted for 216 days, during which 24 trays of wheat were consecutively planted (one every 9 days), 16 of which were grown to maturity and harvested. The remaining 8 trays were harvested on day 216. Grain yields averaged 520 g m(exp -2), and had an average edible biomass of 32 percent. Consecutive yields were unaffected by nutrient solution age. It was concluded that continual wheat production will work in this system over an extended period of time. Certain micronutrient deficiencies and toxicities posed problems and must be addressed in future continuous production systems

    A review of recent activities in the NASA CELSS program

    Get PDF
    A CELSS (Controlled Ecological Life Support System) is a device that utilizes photosynthetic organisms and light energy to regenerate waste materials into oxygen and food for a crew in space. The results of studies with the CELSS program suggest that a bioregenerative life support system is a useful and effective method of regenerating consumable materials for crew sustenance. The data suggests that the operation of a CELSS in space is practical if plants can be made to behave predictably in the space environment. Much of the work centers on the biological components of the CELSS system. Ways of achieving high efficiency and long term stability of all components of the system are examined. Included are explorations of the conversion of nonedible cellulose to edible materials, nitrogen fixation by biological and chemical methods, and methods of waste processing. A description is provided of the extent to which a bioregenerative life support system can meet the constraints of the space environment, and the degree is assessed to which system efficiency and stability can be increased during the next decade

    Engineering verification of the biomass production chamber

    Get PDF
    The requirements for life support systems, both biological and physical-chemical, for long-term human attended space missions are under serious study throughout NASA. The KSC 'breadboard' project has focused on biomass production using higher plants for atmospheric regeneration and food production in a special biomass production chamber. This chamber is designed to provide information on food crop growth rate, contaminants in the chamber that alter plant growth requirements for atmospheric regeneration, carbon dioxide consumption, oxygen production, and water utilization. The shape and size, mass, and energy requirements in relation to the overall integrity of the biomass production chamber are under constant study

    Plant growth chamber M design

    Get PDF
    Crop production is just one of the many processes involved in establishing long term survival of man in space. The benefits of integrating higher plants into the overall plan was recognized early by NASA through the Closed Ecological Life Support System (CELSS) program. The first step is to design, construct, and operate a sealed (gas, liquid, and solid) plant growth chamber. A 3.6 m diameter by 6.7 m high closed cylinder (previously used as a hypobaric vessel during the Mercury program) is being modified for this purpose. The chamber is mounted on legs with the central axis vertical. Entrance to the chamber is through an airlock. This chamber will be devoted entirely to higher plant experimentation. Any waste treatment, food processing or product storage studies will be carried on outside of this chamber. Its primary purpose is to provide input and output data on solids, liquids, and gases for single crop species and multiple species production using different nutrient delivery systems

    An Integrative framework of buyer-supplier negative relationship quality and dysfunctional interfirm conflict

    Get PDF
    Purpose: Problems of relationship quality and interfirm conflict in business to business settings are serious concerns that need to be addressed. Thus, the authors have engaged in an extensive review to promote an understanding of these complex issues. This paper develops an integrated framework for analyzing wide-ranging relations between individual representatives and patterns of interfirm incompatibility for managerial control. Methodology/Approach: The review involves numerous sources that include articles and monographs. A theoretical framework is constructed to integrate fragmented empirical data. In particular, social identity and commitment-trust theories are mobilized for this framework. Findings: The review of studies has a substantial consistency with the theoretical framework. The paper outlines a causal chain from interpersonal agent dissimilarities to dysfunctional buyer-supplier relations, culminating in interfirm pathological conflict. Moderating factors in the causal chain are: agent identity differentiation (for interpersonal dissimilarity), supplier relations mismanagement (for buyer-supplier relationship quality), and interfirm opportunism (for interfirm pathological conflict). Buyer-supplier interfirm incompatibility mediates the causal link between interpersonal dissimilarity and buyer-supplier relationship quality. Identity differentiation, the validation of one’s self-image, is introduced as a process that determines buyer-supplier agent interpersonal dissimilarity judgments. This framework employs a contextual perspective. It describes interactions between observations of micro-level phenomena of interpersonal dissimilarities and macro-level models of interfirm fit. From a managerial perspective, interpersonal relations between individual buyer and supplier agents may be further strengthened by such strategies as expanding the scope of the interpersonal relationship, relaxation of role responsibilities, and volunteering business-related contact referrals. Originality/Value: A new theoretical framework has been devised to predict and explain relationship quality and interfirm pathological conflict in the B to B context. The framework contributes to the value of the knowledge base by serving as a means for building new diagnostic tools for assessment of interfirm behavioral issues affecting exchanges. New concepts are introduced to enhance current literature on B to B marketing. The framework provides concrete indicators that operationally define ideas and enable or improve measurement for empirical modeling

    Self-pulsation at 480 GHz from a two-color discrete mode laser diode

    Get PDF
    A discrete mode Fabry-Pérot laser is designed and fabricated to achieve two-color lasing. We demonstrate beating between the two laser modes and self-pulsation at 480 GHz

    VLA Observations of Candidate Supernova Remnants from the Clark Lake 30.9 MHz Galactic Plane Survey

    Get PDF
    We report the results of 1464 MHz continuum VLA observations of eight fields containing unidentified small-diameter objects associated with candidate supernova remnants from the Clark Lake 30.9 MHz galactic plane survey. The observations were made in the C configuration, giving a resolution of -12-20 arcsec, and a sensitivity of typically <0.5 mJy per beam. Polarization measurements were made as well. One of the 30.9 MHz candidates, G41.4+ 1.2, appears to be confirmed as a supernova remnant by our observations. Of the remaining seven fields observed, three were found to contain small-diameter objects which met some of the criteria for nonthermal origin, but will require further study to evaluate whether they are associated with the candidate supernova remnants. Two of the fields were found to contain groups of unresolved objects consistent with expectations for extragalactic background sources. In these cases the 30.9 MHz observations, which could not resolve the individual sources but would view them as a single extended source, may have mistakenly identified them as possible supernova remnants. Finally, two fields contained bright H II region

    Three New Long Period X-ray Pulsars Discovered in the Small Magellanic Cloud

    Get PDF
    The Small Magellanic Cloud is increasingly an invaluable laboratory for studying accreting and isolated X-ray pulsars. We add to the class of compact SMC objects by reporting the discovery of three new long period X-ray pulsars detected with the {\it Chandra X-ray Observatory}. The pulsars, with periods of 152, 304 and 565 seconds, all show hard X-ray spectra over the range from 0.6 - 7.5 keV. The source positions of the three pulsars are consistent with known H-alpha emission sources, indicating they are likely to be Be type X-ray binary star systems.Comment: Accepted for publication in the Astrophysical Journa

    Discovery of 36 eclipsing EL CVn binaries found by the Palomar Transient Factory

    Get PDF
    We report the discovery and analysis of 36 new eclipsing EL CVn-type binaries, consisting of a core helium-composition pre-white dwarf and an early-type main-sequence companion, more than doubling the known population of these systems. We have used supervised machine learning methods to search 0.8 million lightcurves from the Palomar Transient Factory, combined with SDSS, Pan-STARRS and 2MASS colours. The new systems range in orbital periods from 0.46-3.8 d and in apparent brightness from ~14-16 mag in the PTF RR or gg^{\prime} filters. For twelve of the systems, we obtained radial velocity curves with the Intermediate Dispersion Spectrograph at the Isaac Newton Telescope. We modelled the lightcurves, radial velocity curves and spectral energy distributions to determine the system parameters. The radii (0.3-0.7 R\mathrm{R_{\odot}}) and effective temperatures (8000-17000 K) of the pre-He-WDs are consistent with stellar evolution models, but the masses (0.12-0.28 M\mathrm{M_{\odot}}) show more variance than models predicted. This study shows that using machine learning techniques on large synoptic survey data is a powerful way to discover substantial samples of binary systems in short-lived evolutionary stages
    corecore