1,387 research outputs found
Direct Determination of the CKM Matrix from Decays of W Bosons and Top Quarks at High Energy e+e- Colliders
At proposed high energy linear e+e- colliders a large number of W bosons and
top quarks will be produced. We evaluate the potential precision to which the
decay branching ratios into the various quark species can be measured, implying
also the determination of the respective CKM matrix elements. Crucial is the
identification of the individual quark flavours, which can be achieved
independent of QCD models. For transitions involving up quarks the accuracy is
of the same order of magnitude as has been reached in hadron decays. We
estimate that for charm transitions a precision can be reached that is superior
to current and projected traditional kinds of measurements. The t->b
determination will be significantly improved, and for the first time a direct
measurement of the t->s transition can be made. In all cases such a
determination is complementary to the traditional way of extracting the CKM
matrix elements.Comment: 28 pages, 4 figures; Submitted to Eur. Phys. J.
QCD and Hadronic Interactions - Experimental Summary of Moriond 03
The broad progress in QCD studies during the last years is summarise
System Tests of the ATLAS Pixel Detector
The innermost part of the ATLAS (A Toroidal LHC ApparatuS) experiment at the
LHC (Large Hadron Collider) will be a pixel detector, which is presently under
construction. Once installed into the experimental area, access will be
extremely limited. To ensure that the integrated detector assembly operates as
expected, a fraction of the detector which includes the power supplies and
monitoring system, the optical readout, and the pixel modules themselves, has
been assembled and operated in a laboratory setting for what we refer to as
system tests. Results from these tests are presented.Comment: 5 Pages, 9 Figures, to appear in Proceedings of the Eleventh Workshop
on Electronics for LHC and Future Experiment
Upgrade of the BOC for the ATLAS Pixel Insertable B-Layer
The phase 1 upgrade of the ATLAS [1] pixel detector will be done by inserting a fourth pixel layer together with a new beampipe into the recent three layer detector. This new detector, the Insertable B-Layer (IBL) should be integrated into the recent pixel system with as few changes in services as possible, but deliver some advantages over the recent system. One of those advantages will be a new data transmission link from the detector modules to the off-detector electronics, requiring a re-design of the electro-optical converters on the off-detector side. First ideas of how to implement those, together with some ideas to reduce cost by increasing the systems throughput are discussed
A Serendipitous Galaxy Cluster Survey with XMM: Expected Catalogue Properties and Scientific Applications
This paper describes a serendipitous galaxy cluster survey that we plan to
conduct with the XMM X-ray satellite. We have modeled the expected properties
of such a survey for three different cosmological models, using an extended
Press-Schechter (Press & Schechter 1974) formalism, combined with a detailed
characterization of the expected capabilities of the EPIC camera on board XMM.
We estimate that, over the ten year design lifetime of XMM, the EPIC camera
will image a total of ~800 square degrees in fields suitable for the
serendipitous detection of clusters of galaxies. For the presently-favored
low-density model with a cosmological constant, our simulations predict that
this survey area would yield a catalogue of more than 8000 clusters, ranging
from poor to very rich systems, with around 750 detections above z=1. A
low-density open Universe yields similar numbers, though with a different
redshift distribution, while a critical-density Universe gives considerably
fewer clusters. This dependence of catalogue properties on cosmology means that
the proposed survey will place strong constraints on the values of Omega-Matter
and Omega-Lambda. The survey would also facilitate a variety of follow-up
projects, including the quantification of evolution in the cluster X-ray
luminosity-temperature relation, the study of high-redshift galaxies via
gravitational lensing, follow-up observations of the Sunyaev-Zel'dovich effect
and foreground analyses of cosmic microwave background maps.Comment: Accepted to ApJ. Minor changes, e.g. presentation of temperature
errors as a figure (rather than as a table). Latex (20 pages, 6 figures, uses
emulateapj.sty
The Dipole Anisotropy of the First All-Sky X-ray Cluster Sample
We combine the recently published CIZA galaxy cluster catalogue with the
XBACs cluster sample to produce the first all-sky catalogue of X-ray clusters
in order to examine the origins of the Local Group's peculiar velocity without
the use of reconstruction methods to fill the traditional Zone of Avoidance.
The advantages of this approach are (i) X-ray emitting clusters tend to trace
the deepest potential wells and therefore have the greatest effect on the
dynamics of the Local Group and (ii) our all-sky sample provides data for
nearly a quarter of the sky that is largely incomplete in optical cluster
catalogues. We find that the direction of the Local Group's peculiar velocity
is well aligned with the CMB as early as the Great Attractor region 40 h^-1 Mpc
away, but that the amplitude of its dipole motion is largely set between 140
and 160 h^-1 Mpc. Unlike previous studies using galaxy samples, we find that
without Virgo included, roughly ~70% of our dipole signal comes from mass
concentrations at large distances (>60 h^-1 Mpc) and does not flatten,
indicating isotropy in the cluster distribution, until at least 160 h^-1 Mpc.
We also present a detailed discussion of our dipole profile, linking observed
features to the structures and superclusters that produce them. We find that
most of the dipole signal can be attributed to the Shapley supercluster
centered at about 150 h^-1 Mpc and a handful of very massive individual
clusters, some of which are newly discovered and lie well in the Zone of
Avoidance.Comment: 15 Pages, 9 Figures. Accepted by Ap
Colour reconnection in e+e- -> W+W- at sqrt(s) = 189 - 209 GeV
The effects of the final state interaction phenomenon known as colour
reconnection are investigated at centre-of-mass energies in the range sqrt(s) ~
189-209 GeV using the OPAL detector at LEP. Colour reconnection is expected to
affect observables based on charged particles in hadronic decays of W+W-.
Measurements of inclusive charged particle multiplicities, and of their angular
distribution with respect to the four jet axes of the events, are used to test
models of colour reconnection. The data are found to exclude extreme scenarios
of the Sjostrand-Khoze Type I (SK-I) model and are compatible with other
models, both with and without colour reconnection effects. In the context of
the SK-I model, the best agreement with data is obtained for a reconnection
probability of 37%. Assuming no colour reconnection, the charged particle
multiplicity in hadronically decaying W bosons is measured to be (nqqch) =
19.38+-0.05(stat.)+-0.08 (syst.).Comment: 30 pages, 9 figures, Submitted to Euro. Phys. J.
Search for Yukawa Production of a Light Neutral Higgs Boson at LEP
Within a Two-Higgs-Doublet Model (2HDM) a search for a light Higgs boson in
the mass range of 4-12 GeV has been performed in the Yukawa process e+e- -> b
bbar A/h -> b bbar tau+tau-, using the data collected by the OPAL detector at
LEP between 1992 and 1995 in e+e- collisions at about 91 GeV centre-of-mass
energy. A likelihood selection is applied to separate background and signal.
The number of observed events is in good agreement with the expected
background. Within a CP-conserving 2HDM type II model the cross-section for
Yukawa production depends on xiAd = |tan beta| and xihd = |sin alpha/cos beta|
for the production of the CP-odd A and the CP-even h, respectively, where tan
beta is the ratio of the vacuum expectation values of the Higgs doublets and
alpha is the mixing angle between the neutral CP-even Higgs bosons. From our
data 95% C.L. upper limits are derived for xiAd within the range of 8.5 to 13.6
and for xihd between 8.2 to 13.7, depending on the mass of the Higgs boson,
assuming a branching fraction into tau+tau- of 100%. An interpretation of the
limits within a 2HDM type II model with Standard Model particle content is
given. These results impose constraints on several models that have been
proposed to explain the recent BNL measurement of the muon anomalous magnetic
moment.Comment: 24 pages, 9 figures, Submitted to Euro. Phys. J.
W+W- production and triple gauge boson couplings at LEP energies up to 183 GeV
A study of W-pair production in e+e- annihilations at Lep2 is presented,
based on 877 W+W- candidates corresponding to an integrated luminosity of 57
pb-1 at sqrt(s) = 183 GeV. Assuming that the angular distributions of the
W-pair production and decay, as well as their branching fractions, are
described by the Standard Model, the W-pair production cross-section is
measured to be 15.43 +- 0.61 (stat.) +- 0.26 (syst.) pb. Assuming lepton
universality and combining with our results from lower centre-of-mass energies,
the W branching fraction to hadrons is determined to be 67.9 +- 1.2 (stat.) +-
0.5 (syst.)%. The number of W-pair candidates and the angular distributions for
each final state (qqlnu,qqqq,lnulnu) are used to determine the triple gauge
boson couplings. After combining these values with our results from lower
centre-of-mass energies we obtain D(kappa_g)=0.11+0.52-0.37,
D(g^z_1)=0.01+0.13-0.12 and lambda=-0.10+0.13-0.12, where the errors include
both statistical and systematic uncertainties and each coupling is determined
setting the other two couplings to the Standard Model value. The fraction of W
bosons produced with a longitudinal polarisation is measured to be
0.242+-0.091(stat.)+-0.023(syst.). All these measurements are consistent with
the Standard Model expectations.Comment: 48 pages, LaTeX, including 13 eps or ps figures, submitted to
European Physical Journal
Scaling violations of quark and gluon jet fragmentation functions in e+e- annihilations at sqrt(s) = 91.2 and 183-209 GeV
Flavour inclusive, udsc and b fragmentation functions in unbiased jets, and
flavour inclusive, udsc, b and gluon fragmentation functions in biased jets are
measured in e+e- annihilations from data collected at centre-of-mass energies
of 91.2, and 183-209 GeV with the OPAL detector at LEP. The unbiased jets are
defined by hemispheres of inclusive hadronic events, while the biased jet
measurements are based on three-jet events selected with jet algorithms.
Several methods are employed to extract the fragmentation functions over a wide
range of scales. Possible biases are studied in the results are obtained. The
fragmentation functions are compared to results from lower energy e+e-
experiments and with earlier LEP measurements and are found to be consistent.
Scaling violations are observed and are found to be stronger for the
fragmentation functions of gluon jets than for those of quarks. The measured
fragmentation functions are compared to three recent theoretical
next-to-leading order calculations and to the predictions of three Monte Carlo
event generators. While the Monte Carlo models are in good agreement with the
data, the theoretical predictions fail to describe the full set of results, in
particular the b and gluon jet measurements.Comment: 46 pages, 17 figures, Submitted to Eur. Phys J.
- …
