Abstract

This paper describes a serendipitous galaxy cluster survey that we plan to conduct with the XMM X-ray satellite. We have modeled the expected properties of such a survey for three different cosmological models, using an extended Press-Schechter (Press & Schechter 1974) formalism, combined with a detailed characterization of the expected capabilities of the EPIC camera on board XMM. We estimate that, over the ten year design lifetime of XMM, the EPIC camera will image a total of ~800 square degrees in fields suitable for the serendipitous detection of clusters of galaxies. For the presently-favored low-density model with a cosmological constant, our simulations predict that this survey area would yield a catalogue of more than 8000 clusters, ranging from poor to very rich systems, with around 750 detections above z=1. A low-density open Universe yields similar numbers, though with a different redshift distribution, while a critical-density Universe gives considerably fewer clusters. This dependence of catalogue properties on cosmology means that the proposed survey will place strong constraints on the values of Omega-Matter and Omega-Lambda. The survey would also facilitate a variety of follow-up projects, including the quantification of evolution in the cluster X-ray luminosity-temperature relation, the study of high-redshift galaxies via gravitational lensing, follow-up observations of the Sunyaev-Zel'dovich effect and foreground analyses of cosmic microwave background maps.Comment: Accepted to ApJ. Minor changes, e.g. presentation of temperature errors as a figure (rather than as a table). Latex (20 pages, 6 figures, uses emulateapj.sty

    Similar works