2,170 research outputs found
Quantification of the differences between quenched and annealed averaging for RNA secondary structures
The analytical study of disordered system is usually difficult due to the
necessity to perform a quenched average over the disorder. Thus, one may resort
to the easier annealed ensemble as an approximation to the quenched system. In
the study of RNA secondary structures, we explicitly quantify the deviation of
this approximation from the quenched ensemble by looking at the correlations
between neighboring bases. This quantified deviation then allows us to propose
a constrained annealed ensemble which predicts physical quantities much closer
to the results of the quenched ensemble without becoming technically
intractable.Comment: 9 pages, 14 figures, submitted to Phys. Rev.
Plant Genome Size Influences Stress Tolerance of Invasive and Native Plants via Plasticity
Plant genome size influences the functional relationships between cellular and whole‐plant physiology, but we know little about its importance to plant tolerance of environmental stressors and how it contributes to range limits and invasion success. We used native and invasive lineages of a wetland plant to provide the first experimental test of the Large Genome Constraint Hypothesis (LGCH)—that plants with large genomes are less tolerant of environmental stress and less plastic under stress gradients than plants with small genomes. We predicted that populations with larger genomes would have a lower tolerance and less plasticity to a stress gradient than populations with smaller genomes. In replicated experiments in northern and southern climates in the United States, we subjected plants from 35 populations varying in genome size and lineage to two salinity treatments. We measured traits associated with growth, physiology, nutrition, defense, and plasticity. Using AICc model selection, we found all plant traits, except stomatal conductance, were influenced by environmental stressors and genome size. Increasing salinity was stressful to plants and affected most plant traits. Notably, biomass in the high‐salinity treatment was 3.0 and 4.9 times lower for the invasive and native lineages, respectively. Plants in the warmer southern greenhouse had higher biomass, stomate density, stomatal conductance, leaf toughness, and lower aboveground percentage of N and total phenolics than in the northern greenhouse. Moreover, responses to the salinity gradient were generally much stronger in the southern than northern greenhouse. Aboveground biomass increased significantly with genome size for the invasive lineage (43% across genome sizes) but not for the native. For 8 of 20 lineage trait comparisons, greenhouse location × genome size interaction was also significant. Interestingly, the slope of the relationship between genome size and trait means was in the opposite direction for some traits between the gardens providing mixed support for LGCH. Finally, for 30% of the comparisons, plasticity was significantly related to genome size—for some plant traits, the relationship was positive, and in others, it was negative. Overall, we found mixed support for LGCH and for the first time found that genome size is associated with plasticity, a trait widely regarded as important to invasion success
RNA secondary structure formation: a solvable model of heteropolymer folding
The statistical mechanics of heteropolymer structure formation is studied in
the context of RNA secondary structures. A designed RNA sequence biased
energetically towards a particular native structure (a hairpin) is used to
study the transition between the native and molten phase of the RNA as a
function of temperature. The transition is driven by a competition between the
energy gained from the polymer's overlap with the native structure and the
entropic gain of forming random contacts. A simplified Go-like model is
proposed and solved exactly. The predicted critical behavior is verified via
exact numerical enumeration of a large ensemble of similarly designed
sequences.Comment: 4 pages including 2 figure
Counting, generating and sampling tree alignments
Pairwise ordered tree alignment are combinatorial objects that appear in RNA
secondary structure comparison. However, the usual representation of tree
alignments as supertrees is ambiguous, i.e. two distinct supertrees may induce
identical sets of matches between identical pairs of trees. This ambiguity is
uninformative, and detrimental to any probabilistic analysis.In this work, we
consider tree alignments up to equivalence. Our first result is a precise
asymptotic enumeration of tree alignments, obtained from a context-free grammar
by mean of basic analytic combinatorics. Our second result focuses on
alignments between two given ordered trees and . By refining our grammar
to align specific trees, we obtain a decomposition scheme for the space of
alignments, and use it to design an efficient dynamic programming algorithm for
sampling alignments under the Gibbs-Boltzmann probability distribution. This
generalizes existing tree alignment algorithms, and opens the door for a
probabilistic analysis of the space of suboptimal RNA secondary structures
alignments.Comment: ALCOB - 3rd International Conference on Algorithms for Computational
Biology - 2016, Jun 2016, Trujillo, Spain. 201
Evolution Equation of Phenotype Distribution: General Formulation and Application to Error Catastrophe
An equation describing the evolution of phenotypic distribution is derived
using methods developed in statistical physics. The equation is solved by using
the singular perturbation method, and assuming that the number of bases in the
genetic sequence is large. Applying the equation to the mutation-selection
model by Eigen provides the critical mutation rate for the error catastrophe.
Phenotypic fluctuation of clones (individuals sharing the same gene) is
introduced into this evolution equation. With this formalism, it is found that
the critical mutation rate is sometimes increased by the phenotypic
fluctuations, i.e., noise can enhance robustness of a fitted state to mutation.
Our formalism is systematic and general, while approximations to derive more
tractable evolution equations are also discussed.Comment: 22 pages, 2 figure
Modeling long-range memory with stationary Markovian processes
In this paper we give explicit examples of power-law correlated stationary
Markovian processes y(t) where the stationary pdf shows tails which are
gaussian or exponential. These processes are obtained by simply performing a
coordinate transformation of a specific power-law correlated additive process
x(t), already known in the literature, whose pdf shows power-law tails 1/x^a.
We give analytical and numerical evidence that although the new processes (i)
are Markovian and (ii) have gaussian or exponential tails their autocorrelation
function still shows a power-law decay =1/T^b where b grows with a
with a law which is compatible with b=a/2-c, where c is a numerical constant.
When a<2(1+c) the process y(t), although Markovian, is long-range correlated.
Our results help in clarifying that even in the context of Markovian processes
long-range dependencies are not necessarily associated to the occurrence of
extreme events. Moreover, our results can be relevant in the modeling of
complex systems with long memory. In fact, we provide simple processes
associated to Langevin equations thus showing that long-memory effects can be
modeled in the context of continuous time stationary Markovian processes.Comment: 5 figure
Neuropsychological outcomes following paediatric temporal lobe surgery for epilepsies: Evidence from a systematic review
Objective: The systematic review aimed to assess the neuropsychological outcomes of temporal lobe resections for epilepsy in children. Additional objectives included determining whether earlier age at surgery leads to better neuropsychological outcomes; the relationships between and predictors of these outcomes. Methods: Using advanced search terms, a systematic review of electronic databases was conducted, comprising MEDLINE, Embase, PsycINFO, Global Health, Web of Science and CINAHL. Included studies reported on outcome following neurosurgical treatment for epilepsy. Specifically, studies were included if they reported neuropsychological outcomes and were concerned only with temporal lobe resection. Results: 73 studies met inclusion criteria. For reported neuropsychological outcomes, the majority of participants remained stable after surgery; some declined and some improved. There was some evidence for increased material-specific memory deficits after temporal lobe surgery based on resection side, and more positive cognitive outcome for those with lower pre-surgical ability level. Significance: Retrieved evidence highlights the need for improvements to quality of methodology and reporting. Appropriately designed prospective multicentre trials should be conducted with adequate follow-up for long-term outcomes to be measured. Core outcome measures should be agreed between centres. This would permit higher quality evidence so that clinicians, young people and their families may make better informed decisions about whether or not to proceed with surgery and likely post-operative profile
Rank Statistics in Biological Evolution
We present a statistical analysis of biological evolution processes.
Specifically, we study the stochastic replication-mutation-death model where
the population of a species may grow or shrink by birth or death, respectively,
and additionally, mutations lead to the creation of new species. We rank the
various species by the chronological order by which they originate. The average
population N_k of the kth species decays algebraically with rank, N_k ~ M^{mu}
k^{-mu}, where M is the average total population. The characteristic exponent
mu=(alpha-gamma)/(alpha+beta-gamma)$ depends on alpha, beta, and gamma, the
replication, mutation, and death rates. Furthermore, the average population P_k
of all descendants of the kth species has a universal algebraic behavior, P_k ~
M/k.Comment: 4 pages, 3 figure
- …