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The analytical study of a disordered system is usually difficult due to the necessity to perform a quenched
average over the disorder. Thus, one may resort to the easier annealed ensemble as an approximation to the
quenched system. In the study of RNA secondary structures, we explicitly quantify the deviation of this
approximation from the quenched ensemble by looking at the correlations between neighboring bases. This
quantified deviation then allows us to propose a constrained annealed ensemble which predicts some physical
quantities much closer to the results of the quenched ensemble without becoming technically intractable.
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I. INTRODUCTION

Heteropolymer folding is of crucial significance in mo-
lecular biology. It is the basis for the mechanism with which
cells can produce three dimensional building blocks out of
the one-dimensional information stored in their genome.
Cells achieve this by forming �still one-dimensional� poly-
mers �proteins and RNA� by stringing together different
monomers with covalent bonds. All monomers share a com-
patible backbone but they have different side chains and oc-
cur in a predefined order along the sequence. Physical inter-
actions between these monomers force the polymer to stably
fold into a three dimensional structure. This structure is cru-
cial for the function of the molecule; it is determined by the
specific sequence of the polymer �1–4�.

In addition to its biological relevance, heteropolymer
folding is also a very interesting problem of statistical me-
chanics �5–17�. The competition between the configurational
entropy of the polymer, the overall tendency of the mono-
mers to stick to each other, the sequence disorder, and the
preference of folding toward a biologically active native
state, leads to a very rich thermodynamic phase diagram.
While the same qualitative behavior is expected for proteins
and RNA, we will here concentrate on RNA since RNA fold-
ing is more amenable to analytical and numerical approaches
than protein folding. The relative simplicity of the RNA fold-
ing problem compared to the protein folding problem does
not stem from the fact that RNA consists of only four differ-
ent bases versus the twenty amino acids the proteins are
composed of, but it comes from the simpler interaction rules:
The dominant interaction between the four bases A, U, G,
and C of an RNA molecule is Watson-Crick �G-C and A-U�
pair formation, i.e., if two bases have formed a pair they to
first order do not take part in any further interactions. Every
amino acid of a protein on the contrary interacts with all its
spatial neighbors, i.e., with on the order of ten other amino
acids at a time.

From a statistical physics point of view, the possibility of
a glass phase at low temperatures driven by sequence disor-
der, is of special interest in the heteropolymer folding prob-
lem �6–12�. Unfortunately, even for the case of RNA folding
an analytic quantitative description of the glass phase is still

outstanding. Thus, quantitative studies have to either rely on
numerics or they have to use what is known as the annealed
average. In the annealed average, the free energy of the sys-
tem is approximated as the logarithm of the ensemble aver-
aged partition function �instead of taking the ensemble aver-
age over the logarithm of the partition function called the
quenched average�. Physically, this approximation corre-
sponds to treating the sequence degrees of freedom as dy-
namical instead of frozen variables. Thus, the annealed sys-
tem represents a sequence ensemble that is coupled to the
structural ensemble by way of the interaction energies. This
sequence ensemble may be different from the original se-
quence ensemble of uncorrelated random sequences over
which the free energy is supposed to be averaged. Due to
these differences between the annealed and the quenched se-
quence ensemble the annealed free energy is only an ap-
proximation to the true �quenched� free energy of a disor-
dered system.

The purpose of this manuscript is to first quantify the
differences between the annealed and the quenched sequence
ensembles. Specifically, we will look at the correlations be-
tween neighboring bases. We show that while these correla-
tions are strictly zero in the correct �quenched� sequence en-
semble, they are nonzero in the annealed sequence ensemble
and increases with decreasing temperature—up to complete
correlation in certain models of RNA folding. This clearly
underlines and quantifies the fundamental shortcomings of
the annealed average in the RNA folding problem at low
temperatures.

Based on the quantified nonzero nearest neighbor correla-
tions, we then try to diminish the differences between the
annealed and quenched ensembles by forcing the annealed
ensemble to present zero neighboring correlations. This con-
strained annealed ensemble behaves much more similar to
the quenched ensemble than the annealed ensemble. Al-
though the glass phase itself can not be identified using the
constrained annealed ensemble which only partially corrects
the overall non-random correlations, one can obtain thermo-
dynamic quantities which are much closer to the quenched
results than the annealed ones using this method.

This paper is organized as follows: In Sec. II, we briefly
review the RNA secondary structure and introduce the gen-
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eral RNA folding problem with sequence disorder. In Sec.
III, we quantify the deviation of nearest neighbor correla-
tions of the annealed ensemble. Finally, we improve the pure
annealed ensemble by applying a constraint of random cor-
relations in Sec. IV.

II. RNA FOLDING PROBLEM WITH SEQUENCE
DISORDER

A. RNA secondary structures

RNA is a single-stranded biopolymer of four different
bases A, U, C, and G. The strand can fold back onto itself
and form helices consisting of stacks of stable Watson-Crick
pairs �A with U or G with C�. This comparatively simple
interaction scheme makes the RNA folding problem very
amenable to theoretical approaches without losing the overall
flavor of the general biopolymer folding problem �5�.

An RNA secondary structure S is characterized by its set
of Watson-Crick base pairs �i , j� where i and j denote the ith
and jth base of the RNA polymer respectively �convention-
ally i� j�. Here, we follow many previous studies �5–17� and
apply the reasonable approximation to exclude so-called
pseudoknots �18�, i.e., for two Watson-Crick pairs �i , j��S
and �k , l��S, configurations with i�k� j� l are not al-
lowed. This approximation is justified, because short
pseudoknots do not contribute much to the overall energy
and long pseudoknots are kinetically difficult to form.

B. Quenched averaging

The properties of RNA folding, especially the possibility
of a glass phase driven by the sequence disorder, have been a
challenging problem from the statistical physics points of
view. To understand the statistics of this disordered system,
one first has to assign an energy E�� ,S� to every secondary
structure S for a given sequence �. This could, e.g., simply
be the negative of the total number of Watson-Crick base
pairs. This then allows us to calculate the partition function

Z��� = �
S

� ��,S�e−E��,S�/kBT �1�

for a given sequence � where ��� ,S� is one when the sec-
ondary structure S is compatible with the sequence � and
zero otherwise. Finally, one has to calculate the quenched
average

Fq = − kBT�ln Z����� �2�

over all sequences �.

C. Annealed averaging

Unfortunately, the quenched free energy Fq is very diffi-
cult to calculate. Thus, one can try to approximate the
quenched free energy by the much easier computed annealed
free energy, which treats the disordered sequence as dynamic
variables. This annealed free energy is only a lower bound of
the quenched free energy,

Fa = − kBT ln�Z����� � Fq. �3�

It can be quite different from the quenched free energy
since the annealed ensemble favors those sequences where
more binding pairs are allowed. More importantly, physical
quantities derived from this annealed free energy can be very
different from their quenched counterparts as we will show
explicitly in the following sections. To be specific, we will
measure the correlations between neighboring bases which
are known to vanish in the quenched case.

D. Energy models

In this paper, we study the simplest model of disordered
RNA sequences which contain only the two bases A and U.
In assigning free energies to secondary structures, we neglect
any loop entropies and focus on the base pairs alone. Be-
sides, for most parts of this manuscript, we do not consider
the minimal hairpin length constraint which requires the two
bases of a binding pair to be separated by at least three bases
in a real RNA molecule. Within these approximations we do
consider two different energy models.

In the binding energy model, we simply assign an energy
� to each AU �or UA� binding pair. We denote the corre-
sponding Boltzmann factor by q=e���/kBT. This model cap-
tures the main features of the energetics and is simple
enough for analytical and numerical studies.

We also study a somewhat more realistic energy model,
namely the stacking energy model. In this model, we assign
energies to the stacking of two base pairs rather than to in-
dividual base pairs. This stacking energy depends in reality
on the identities of all four bases involved. We implement
this effect by associating a Boltzmann factor s1 with stack-
ings of types AA

UU and UU
AA while associating a different Bolt-

zmann factor s2 with stackings of types AU
UA and UA

AU . To be
specific, we will choose these Boltzmann factors as s1
=e2���/kBT and s2=e���/kBT for the remainder of this communi-
cation.

The main reason to study the stacking energy model is
that the simple binding energy model is known to be patho-
logical without a glass phase at low temperature in the dis-
ordered sequence ensemble �7–9�. A simple reason is that
whatever the sequence, each base A can always find another
base U to pair with provided we have the same amount of
bases A and U. Thus, sequences disorder does not cause frus-
tration. In contrast, the energy distribution of the stacking
energy model is greatly affected by sequences, and a struc-
ture in which all base pairs are stacked can in general not be
found for every sequence. Thus, sequence disorder is ex-
pected to cause frustration, and a glass phase is expected in
this energy model for low enough temperature.

III. NEAREST NEIGHBOR CORRELATIONS OF THE
ANNEALED ENSEMBLE

In this section, we calculate quantitatively how the nearest
neighbor correlations in the annealed ensemble deviate from
their true values in the random sequence ensemble. To this
end, we have to calculate the annealed partition function for
sequences with length N-1, which is defined as
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Za�N� =
1

2N−1�
S
	�

�

� ��,S�e−E��,S�/kBT
 . �4�

For the binding energy model, this annealed partition
function can be easily obtained via the recursive relation
shown in Fig. 1 along the lines of previous studies
�10,19–22� but taking the sequences into account explicitly.
The idea is to separate the two cases for the last base, which
is either unbound or bound to a certain base k, and then relate
the partition function to the shorter length one as

Za�N + 1;q� = Za�N;q� +
q

2 �
k=1

N−1

Za�k;q�Za�N − k;q� . �5�

With this relation, one can obtain an analytical formula for
the annealed partition function in the large N limit by per-
forming the z transform, which is defined as

Za
ˆ �z;q� = �

N=1

�

Za�N;q�z−N, �6�

on the recursive relation. After solving the resulting qua-

dratic equation for Za
ˆ �z ;q�, we can obtain the partition func-

tion by doing the inverse z transform,

Za�N;q� =
1

2�i
� Za

ˆ �z;q�zN−1dz . �7�

This approach can be easily generalized to the stacking en-
ergy model.

In order to keep track of the correlations by the annealed
ensemble, we assign an additional Boltzmann factor L to all
AA and UU neighbors within the sequence. The modified
annealed partition function is then

Za�N;q,L� =
1

2N−1�
S
	�

�

� ��,S�qnq�S�LnL���
 , �8�

where nq�S� is the number of binding pairs in a secondary
structure S, and nL��� is the number of conjugate neighbors,
i.e., AA and UU neighbors in the sequence.

The additional Boltzmann factor complicates the calcula-
tion of the partition function since different bases A and U
contribute differently. However, we can still formulate recur-
sive relations by noticing that the two end bases of a se-
quence piece determine the correlations with other pieces.
Thus, we can separate a sequence into two cases where the
end bases are either of the same type or not, and formulate
the recursive relation for each case independently. The an-
nealed partition function Za�N ;q ,L� is then obtained via z
transform as before. Since the formation of the recursive

relations is quite technical, we only address the result here,
and defer the details to Appendix A.

From the partition function we can obtain the nearest
neighbor correlations by looking at the deviation of the av-
eraged fraction of AU �or UA� neighbors from the expected
value 1/2 in the disordered sequence ensemble. This devia-
tion � is obtained by taking the derivative as

� =
1

2
−

1

N
L�L ln„Za�N;q,L�…�L=1. �9�

A. Binding energy model

Figure 2 shows the neighbor correlations for the binding
energy model. We find that the deviation moves further away
from zero as temperature decreases. This is a direct result
from the fact that at low temperature, the main contributions
to the annealed partition function come from those sequences
which allow a lot of binding pairs, unlike the quenched case
where sequences are equally weighted.

The exact way that the neighbor correlations are biased
can be understood as follows. In this binding energy model,
the only thing that biases the nearest neighbor correlations is
the formation of minimal hairpins since they enforce the
neighboring bases to be different, which are either AU or
UA. Thus, the degree of bias is directly coupled to the frac-
tion of smallest hairpins in a sequence.

This assertion can be verified by studying the fraction of
minimal hairpins. As an example, we study the zero tempera-
ture case where all the bases are expected to be paired.
Among all possible pairing structures, we explicitly calculate
the fraction of smallest hairpins �with the details shown in
Appendix B�. As a result, every fourth base is part of a mini-
mal size hairpin. Thus, we have 1/4 AU �or UA� nearest
neighbors from these hairpins and another 1 /2�3/4=3/8
from the rest of the bases since they do not show nearest
neighbor correlation bias. The deviation of the fraction of

FIG. 1. Recursive relation exploring all possible secondary
structures for a homogeneous sequence of length N. The wavy lines
stands for contribution from all possible structures and sequences.
The straight line stands for nonpaired bases.

FIG. 2. Deviation of the fraction of AU �or UA� nearest neigh-
bors. Notice that the deviation moves further away from zero and
stops at a fixed constant as temperature decreases. It also ap-
proaches a limit larger than zero at high temperature indicated by
the dashed line.
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AU �or UA� neighbors is then expected to be 5/8−1/2
=1/8, which matches exactly the zero temperature limit in
Fig. 2. In this case, the sequence, as a dynamic variable,
adjusts itself to all the binding pairs.

Even in the high temperature limit, although all allowed
sequences are equally weighted, there still exists a finite frac-
tion of minimal size hairpins on average. As a result, the
deviation of neighbor correlations approaches a constant
larger than zero.

The assertion that the deviation � is coupled to the forma-
tion of minimal size hairpins is again verified as we addition-
ally require all the hairpins being of length larger than one.
In this case, the correlation between nearest neighbors be-
comes random at all temperatures. However, the second
nearest neighbor correlations become non-trivial.

This simple binding energy model gives us a taste how
the nearest neighbor correlations are coupled with the energy
through the structure, i.e., the formation of minimal hairpins.
This correlation is biased since the annealed ensemble puts
more weight on lower energy sequences.

B. Stacking energy model

Following the same approach, we check the same devia-
tion as a function of temperature in the more realistic stack-
ing energy model. Again, only the result is quoted here in
Fig. 3 �interested readers can check the detailed calculations
in Appendix C�.

Unlike the binding energy model, at zero temperature, the
nearest neighbor correlations of the stacking energy model
are completely biased. Almost no AU �or UA� neighbors can
be found in this annealed system. This can be understood
since at zero temperature, the only dominating structure is a
long stem in which all stacking loops are of type s1. Thus,
the only two important sequences are the ones made of half
consecutive A bases and the other half of U bases.

To verify this structure, we additionally introduce another
Boltzmann factor h for each hairpin loop formation. With
this Boltzmann factor we can keep track of the fraction of
hairpins fh in the annealed system by calculating

fh =
1

N
h�h ln„Za�N;s1,s2,h,L = 1�…�h=1. �10�

From Fig. 4, we do see that the fraction of hairpins of this
annealed system indeed goes to zero as temperature goes to
zero, which is a feature of the long stem structure.

At high temperature, however, the energy model does not
matter since entropy dominates. Thus, the AU �or UA� frac-
tion approaches the same limit as in the binding energy
model.

From this stacking energy model, we learn that the stron-
ger the energy is coupled to the nearest neighbor correla-
tions, the larger deviation in nearest neighbor correlations of
the annealed system will be present at low temperature.

IV. CONSTRAINED ANNEALING

So far we have only observed the sequence correlations
artificially introduced through the annealed ensemble. How-
ever, our approach can in fact be used to generate more re-
alistic ensembles within the annealed framework. The idea is
to force the nearest neighbor correlations to be random when
performing the annealed average �23,24�.

We simply enforce this random disorder constraint, i.e.,
the fraction of AU �or UA� neighbors being one half by
setting the Boltzmann factor L, which controls the nearest
neighbor correlations, to whatever value it needs to have for
the correlations of the annealed ensemble to vanish.

This constrained annealing turns out to predict thermody-
namic quantities much closer to the quenched results. And it
can be done immediately following our quantified deviations
in disorder.

FIG. 3. Deviation of the fraction of AU �or UA� nearest neigh-
bors for the energy model involving stacking energies. Unlike in the
case of the binding energy model, the AU �or UA� neighbor corre-
lations are completely biased at zero temperature in the stacking
energy model. At high temperature, this deviation approaches the
same limit as the binding energy model.

FIG. 4. Fraction of hairpins in the stacking energy model for
three different ensembles. Throughout this manuscript, the statisti-
cal error of the quenched results are always smaller than the size of
the symbols.
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A. Binding energy model

The constraint for the binding energy model is read as

1

N
L�L ln„Za�N;q,L�…�L=Lc

=
1

2
. �11�

In this energy model, we expect the sequences with more AU
�or UA� nearest neighbors to be suppressed since the an-
nealed system favors those neighbors. As a result, Lc, which
favors AA �or UU� neighbors, is expected to be larger than
one in order to meet the constraint. Furthermore, Lc should
be larger at lower temperatures since the neighbor correlation
is more biased at lower temperatures.

One important note is that the resulting free energy is only
defined up to an additive constant, i.e., adding a constant
background potential does not change the result at all. Thus,
the absolute value of this constrained annealed free energy as
well as the Boltzmann factor Lc has no real meaning. For
example, one could assign the Boltzmann factor L to AU �or
UA� neighbors instead of AA �or UU� neighbors. The result-
ing chemical potential would then change a sign and the free
energy would differ by a constant amount. However, the
thermodynamic quantities, which are calculated by taking
derivatives of the constrained free energy, will not see this
constant and are expected to be closer to the quenched result.

To verify this assertion, we are going to compute the av-
erage fraction of binding pairs for the binding energy model
via q /N�q ln(Za�N ;q ,L�) as a function of temperature. Then,
we compare the cases of the annealed �L=1�, the constrained
annealed �L=Lc� and the quenched ensembles.

As to the quenched result, we numerically calculate the
partition function given random sequences of length 1280
and collect the data from 1000 random sequences. In order to
avoid the trivial finite size effects due to fluctuation of the
fraction of A bases away from its expected value 1/2, we
only choose sequences that contain exactly 640 A’s and 640
U’s. The result is shown in Fig. 5.

We see that the constrained annealed result is indeed very
close to the quenched numerical estimate. However, all three

results are rather close to each other anyway. The reason for
these three cases being so close to each other is simply that
under this energy model the system is not glassy, and every
base is able to find another base for pairing in this binding
energy model. Thus, at zero temperature, all the bases are
paired in all three systems. The fact that the nearest neighbor
correlations are not biased a lot can also be verified as we
find that at kBT / ���=0.1, Lc to be just 1.59. Thus, the chemi-
cal potential introduced from the constraint is comparatively
small and does not affect the result too much.

B. Stacking energy model

The situation for the stacking energy model is very differ-
ent from that of the binding energy model. Here, we follow
the same approach and compute the averaged fraction of
stacking loops of type AA

UU �or UU
AA � and AU

AU �or UA
UA � as a func-

tion of temperature under the constraint,

1

N
L�L ln„Za�N;s1,s2,h = 1,L�…�L=Lc =

1

2
. �12�

Similarly, in order to avoid the trivial finite size effects for
the quenched numerical estimate, we fix the number of AA,
AU, UA, UU neighbors in the randomly chosen sequences to
be 320 each �25�.

From Figs. 6 and 7, we see that the constrained annealed
results are greatly improved over the plain annealed results.
This verifies the idea that larger deviations from the random
disorder result in a better correction via the constraint of the
random disorder. For this stacking energy model, at kBT / ���
=0.1, Lc=0.0067 is much more different from 1 than in the
binding energy model.

From these results, we can see that the constrained an-
nealed ensemble of the stacking energy model behaves in the
following way. Since the ensemble is forced to have the
same number of AA �or UU� and AU �or UA� neighbors, at

FIG. 5. Fraction of binding pairs in the binding energy model.
The constraint of random nearest neighbors brings the annealed
quantity closer to the quenched numerical estimate.

FIG. 6. Fraction of stacking loops AA
UU �or UU

AA � in the stacking
energy model. The constraint of random nearest neighbors fixes this
quantity much better than averaged number of pairs in the binding
energy model. The phenomenological constraint, i.e., a fixed frac-
tion of hairpins, brings this quantity only a bit closer to the
quenched result.
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zero temperature, the dominating structure is still a long stem
structure, but with half the stacking loops being of type s1
and the other half being s2. This is consistent with the fact
that fraction of hairpins going to zero as temperature goes to
zero for the constrained annealed system as shown in Fig. 4.

One difference between the quenched ensemble and the
constrained annealed ensemble is that not all the bases of a
random sequence can form stacking loops. Thus we have a
finite fraction of hairpins in the quenched ensemble �Fig. 4�.
This difference can used as an additional phenomenological
constraint to improve the constrained annealed system even
further.

We apply this additional phenomenological constraint by
requiring the fraction of hairpins fh to fit the quenched nu-
merical estimates and neighboring bases to be uncorrelated
at the same time, i.e., to enforce

L

N
�L ln„Za�N;s1,s2,h,L�…�h=hc,L=Lc

=
1

2
, �13�

h

N
�h ln„Za�N;s1,s2,h,L�…�h=hc,L=Lc

= fh�T� , �14�

where fh�T� is the quenched numerical estimate in this equa-
tion.

From Figs. 6 and 7, we see that this additional constraint
slightly improve the fraction of stacking loops s1, but signifi-
cantly improves the fraction of stacking loops s2. This can be
understood since the existence of hairpins introduces AU �or
UA� neighbors, if the fraction of AU �or UA� neighbors is
also required to be one half, it will decrease the fraction of
stacking loops s2 among the stem structures.

In addition to the fraction of stacking loops, we also look
at the specific heat and its second derivative which has been
shown to be sensitive to the phase transition �7�. From Fig. 8,
we see that the values of both the constrained annealed mod-
els are closer to the quenched results. For the second deriva-
tive of the specific heat �Fig. 9�, which is expected to diverge

at the molten-glass phase transition �7�, it is not clear that the
constrained annealed models would perform better. This re-
sult is expected since none of the constrained annealed mod-
els predicts a phase transition—their asymptotic partition
functions follow the same power law as in the unconstrained
annealed case �Appendix A�. We conclude that the one and
two constrained annealed approach discussed here does not
apply in the vicinity of the phase transition when one studies
any quantity that diverges at the transition. For other quanti-
ties that are not as sensitive to the existence of a phase tran-
sition, however, our constrained annealed approach is able to
give much closer results to the quenched case throughout the
whole range of temperatures.

V. CONCLUSION

We conclude that the deviation of the annealed ensemble
from the quenched ensemble is strongly related to the energy
model and can be completely biased when the correlation is
strongly coupled to the energy of the system. Quantifying

FIG. 7. Fraction of stacking loops AU
UA �or UA

AU � in the stacking
energy model. Again, the constraint of random nearest neighbors
greatly improves the result. However, unlike the case in Fig. 6, the
constraint of a fixed fraction of hairpins also contributes in bringing
the annealed quantity closer to the quenched result.

FIG. 8. Specific heat in the stacking energy model.

FIG. 9. Second derivative of specific heat in the stacking energy
model. The four dashed lines from top to bottom are the quenched
average for sequence length of 1280, 640, 320, and 160, respec-
tively. The statistical errors of the quenched results are always less
than 1.
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this deviation allows us to do constrained annealing which
brings the predictions of thermodynamic quantities much
closer to the real values in the quenched ensemble. As the
deviation is larger, the constraint is stronger and thus brings
the annealed ensemble even closer to the quenched results.
Unfortunately, the biasing toward the quenched ensemble is
not strong enough to actually drive the system into the glass
transition.

Besides the nearest neighbor correlations, one could also
consider the correlations for next nearest neighbors or even
two bases separated by arbitrary distances. In principle, all
these correlations together would bring us to the exact
quenched results and thus to the glass transition. However,
the calculations quickly become much more cumbersome as
one increases the distance between the two bases, and are left
for future work.

APPENDIX

1. Annealed partition function for the binding energy model

The annealed partition function is obtained by first sum-
ming over all compatible sequences given a secondary struc-
ture S and then summing over all possible structures S,
which can be done via the recursive relation in Fig. 1. We
define the annealed partition function for a sequence of
length N as Za�N+1�. In addition, the annealed partition
function for a sequence of length N with its two end bases
paired is defined as Ae�N−1�. The recursive relation in Fig. 1
is then read as

Za�N + 1� =
1 + L

2
Za�N� + �

k=1

N−1
1 + L

4
Za�k − 1�Ae�N − k� .

�15�

The factor �1+L� /2 for the first term on the right hand side
comes from the contribution in nearest neighbor correlations
between the free base N and base N−1, and the 2 takes care
of averaging over the number of sequences. We have a simi-
lar factor in the second term coming from the correlation
between base k of the arch and base k−1. In the later part we
will show that the behavior of the annealed partition function
is mainly determined by the arch term Ae, so we will only
look at this quantity here. The first base of Ae is also speci-
fied to be A and the last base to be the conjugate base U.

Again, the annealed partition function for the arch can be
obtained through a similar recursive relation �Fig. 10�. The
two terms on the right hand side are further decomposed in
Figs. 11 and 12.

In these relations, we need to keep track of two factors:
the energy contributions and the nearest neighbor correla-
tions. From the energetic point of view, an arch can be
thought of simply contributing a Boltzmann factor q and
need not stand for a real binding pair, even though initially it
is used to represent a real binding pair. Thus, in Fig. 11, as
we try to relate the annealed partition function to its shorter
length ones, we assume an effective binding pair between
bases 1 and N−1 simply to conserve the energy contribution.
In this case, the two bases are not really paired.

In order to keep track of the correct nearest neighbor cor-
relations, we use a letter E on an arch to denote that the two
bases at the ends of the arch are conjugate bases. Similarly, a
letter O is used to represent two nonconjugate bases at the
ends of the arch. Thus, in Fig. 11, the two cases where base
N−1 is either A or U are separated and are denoted by letter
E and O, which is determined by whether the bases 1 and
N−1 are conjugate or not. These notations enable us to con-
nect the decomposed terms recursively back to the relation in
Fig. 10.

In Fig. 12, an inner arch can be treated as a free base in
considering the energy and correlations for the rest of the
bases outside the inner arch. However, there is a difference in
counting neighbor correlations for this treatment because the
free base looks as a base A from the right, but as a base U
from the left. The correct correlations can be obtained if we
shift this discrepancy to the last base and flip it from U to A.
Thus, the last term carries a letter O on the arch instead of E.

These recursive relations are then read as

Ae�N − 1� =
L

2
Ae�N − 2� +

1

2
Ao�N − 2� +

1

4 �
k=2

N−2

Ae�N − k − 1�

��LAo�k − 1� + Ae�k − 1�� , �16�

Ao�N − 1� =
L

2
Ao�N − 2� +

1

2
Ae�N − 2� +

1

4 �
k=2

N−2

Ae�N − k − 1�

��LAe�k − 1� + Ao�k − 1�� . �17�

FIG. 10. Recursive relation for the annealed partition function
over heterogeneous sequences where the first and the last bases
form a conjugate pair. A letter “E” is used to denote that the two
bases at the ends of the arch are conjugate bases.

FIG. 11. Decomposition of an arch with its last base inside
being a free base, which can be either A or U, into two cases. The
letter “O” is used to denote that the two bases at the ends of the arch
are nonconjugate.

FIG. 12. Separation of arches.
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Together with the initial conditions, Ae�1�=q, Ae�2�=qL,
Ao�1�=qL, Ao�2�=q�1+L2� /2, one can solve for Ae�N� by
performing the z transform

Ae
ˆ �z� = �

N=1

�

Ae�N�z−N, �18�

Ao
ˆ �z� = �

N=1

�

Ao�N�z−N, �19�

on the recursive relations. After solving for Ae
ˆ �z�, Ae�N� can

be obtained through the inverse transform

Ae�N� =
1

2�i
� Ae

ˆ �z�zN−1dz . �20�

From previous studies �10�, we know that in the thermody-
namic limit, the partition function has an analytical form as
Ae�N�	N−3/2zc�q ,L�N, where zc�q ,L� is the greatest real part

among the branch points obtained from the solution of Ae
ˆ �z�.

Similarly, if we perform z transform on Eq. �15�, we can

relate the z transform of the annealed partition function Za
ˆ �z�

to that of the arch Ae
ˆ �z�. Since these two share the same

branch points, the asymptotic behavior of the annealed par-
tition function is different from the above formula for the
arch by just a different prefactor, which does not play a role
in the thermodynamic limit.

The fraction of AA �or UU� neighboring bases per base
of the annealed system is then easily calculated as
L�L ln(zc�q ,L�) � L=1. Unfortunately, the analytical solution of
this set of polynomial equations is too cumbersome to con-
vey any useful information. Thus we resort to numerical
evaluation of this analytical solution in this paper.

2. Fraction of minimal hairpins at zero temperature

As discussed in the main text, the fraction of minimal size
hairpins can be easily obtained once we figure out the parti-
tion function. At zero temperature, the partition function is
simpler than the finite temperature one since we only need to
consider the ground states where all bases are paired. This
partition function is obtained through the recursive relation
in a similar way as shown in Fig. 13.

We define the partition function for a sequence of length
2�N−1� as Zm�N ,h�, where h is the Boltzmann factor for a
minimal size hairpin. The recursive relation is then read as

Zm�N + 1� = �
k=1

N−1

Zm�k�Zm�N − k + 1� + hZm�N� . �21�

Together with the initial conditions, Zm�1�=1 and Zm�2�=h,
one can obtain the asymptotic behavior through z transform.
After simple algebra, we have the largest pole zc�h�=h

+2�h+1 for the z transform of partition function Zm̂�z ,h�.
The partition function Zm�N� is then proportional to zc�h�N.

The fraction of minimal size hairpins per two bases is
then easily calculated as

�h ln zc�h��h=1 =  1 + 1/�h

h + 2�h + 1


h=1

= 1/2. �22�

Thus the fraction of minimal size hairpins per base is 1 /4.

3. Annealed partition function for the stacking energy
model

The calculation for the stacking energy model follows the
same approach. However, it is a bit more complicated since
we need to keep track of stacking loops involving four bases
which leads us to the recursive relation depicted in Fig. 14.

In these recursive relations, we use an additional letter S
on the arch to denote the fact that we consider the stacking
energy of the stacking loop formed partly by that binding
pair. Independent of the type of the arch, all the stacking
energies inside the arches are still considered in all cases.
Thus the first term on the right hand side in Fig. 14 does not
contain an S because its base N−1 is unbound, and no stack-
ing loop can be formed with the binding pair of the arch.

Similar to the recursive relation in previous section, we
then discard the last base as a free base as shown in Fig. 15.
Again, the arches on the right hand side are meant to pre-
serve the energy contributions only. In the second line of the
relation, we further decompose the terms in order to relate
these terms with the first recursive relation in Fig. 14.

In Fig. 16, we also separate the contributions of the inner
arch from the rest part as in Fig. 12. One difference is that

FIG. 13. Recursive relation for the partition function where all
the bases are paired.

FIG. 14. Recursive relation for the stacking energy model.

FIG. 15. Decomposition of the annealed par-
tition function which last base inside the arch is a
free base.
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we consider the contribution from the hairpin loops in this
case. Thus, the hairpin loop contained in the outer arch term
is not a real hairpin loop because of the existence of the inner
arch. The correct result is obtained by adding the last term in
the relation.

In this stacking energy model, we denote the annealed
partition function for an arch of length N−1 as Aes�N�. The
recursive relations are then read as follows:

Aes�N − 1� =
L

2
	Aes�N − 2� − �s1 − 1�

�1 + L2�
4

Aes�N − 4�

+

1

2
	Aos�N − 2� − �s2 − 1�

2L

4
Aes�N − 4�


+
s1L2 + s2

4
Aes�N − 3� +

1

4 �
k=3

N−2

Aes�N − k − 1�

��L	Aos�k − 1� − �s1 − 1�
2L

4
Aes�k − 3�


+ 	Aes�k − 1� − �s2 − 1�
1 + L2

4
Aes�k − 3�


+ 2	1

h
− 1
Ho�k�� , �23�

Aos�N − 1� =
L

2
	Aos�N − 2� − �s1 − 1�

2L

4
Aes�N − 4�


+
1

2
	Aes�N − 2� − �s2 − 1�

1 + L2

4
Aes�N − 4�


+
s1L + s2L

4
Aes�N − 3� +

1

4 �
k=3

N−2

Aes�N − k − 1�

��L	Aes�k − 1� − �s1 − 1�
1 + L2

4
Aes�k − 3�


+ 	Aos�k − 1� − �s2 − 1�
2L

4
Aes�k − 3�


+ 2	1

h
− 1
He�k�� , �24�

where the terms He and Ho stand for the contribution from a
hairpin. They are obtained separately from a recursive rela-
tion similar to the one in Fig. 11, by just replacing the wavy
line by a straight line, which means that bases are not bound.
One can then easily formulate the recursive relations for He

and Ho.
Together with the initial conditions: Aes�1�=h,

Aes�2�=hL, Aes�3�=h�1+3L2+s2+s1L2� /4, Aos�1�=hL,
Aos�2�=h�1+L2� /2, Aos�3�=h�3L+L3+s1L+s2L� /4, we can
perform z-transform to obtain the asymptotic behavior of
the annealed partition function for the stacking energy
model.
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