28 research outputs found

    Predictions of Two Photon Absorption Profiles Using Time-Dependent Density Functional Theory Combined with SOS and CEO Formalisms

    No full text
    Two-photon absorption (2PA) and subsequent processes may be localized in space with a tightly focused laser beam. This property is used in a wide range of applications, including three dimensional data storage. We report theoretical studies of 5 conjugated chromophores experimentally shown to have large 2PA cross-sections. We use the Time Dependent Density Functional Theory (TD-DFT) to describe the electronic structure. The third order coupled electronic oscillator formalism is applied to calculate frequency-dependent second order hyperpolarizability. Alternatively, the sum over states formalism using state-to-state transition dipoles provided by the a posteriori Tamm-Dancoff approximation is employed. It provides new venues for qualitative interpretation and rational design of 2PA chromophores. © 2009 Springer Berlin Heidelberg

    Open-ended recursive approach for the calculation of multiphoton absorption matrix elements

    Get PDF
    We present an implementation of single residues for response functions to arbitrary order using a recursive approach. Explicit expressions in terms of density-matrix-based response theory for the single residues of the linear, quadratic, cubic, and quartic response functions are also presented. These residues correspond to one-, two-, three- and four-photon transition matrix elements. The newly developed code is used to calculate the one-, two-, three- and four-photon absorption cross sections of para-nitroaniline and para-nitroaminostilbene, making this the first treatment of four-photon absorption in the framework of response theory. We find that the calculated multiphoton absorption cross sections are not very sensitive to the size of the basis set as long as a reasonably large basis set with diffuse functions is used. The choice of exchange–correlation functional, however, significantly affects the calculated cross sections of both charge-transfer transitions and other transitions, in particular, for the larger para-nitroaminostilbene molecule. We therefore recommend the use of a range-separated exchange–correlation functional in combination with the augmented correlation-consistent double-ζ basis set aug-cc-pVDZ for the calculation of multiphoton absorption properties
    corecore