571 research outputs found

    Cocaine-mediated circadian reprogramming in the striatum through dopamine D2R and PPARγ activation

    Get PDF
    Substance abuse disorders are linked to alteration of circadian rhythms, although the molecular and neuronal pathways implicated have not been fully elucidated. Addictive drugs, such as cocaine, induce a rapid increase of dopamine levels in the brain. Here, we show that acute administration of cocaine triggers reprogramming in circadian gene expression in the striatum, an area involved in psychomotor and rewarding effects of drugs. This process involves the activation of peroxisome protein activator receptor gamma (PPARγ), a nuclear receptor involved in inflammatory responses. PPARγ reprogramming is altered in mice with cell-specific ablation of the dopamine D2 receptor (D2R) in the striatal medium spiny neurons (MSNs) (iMSN-D2RKO). Administration of a specific PPARγ agonist in iMSN-D2RKO mice elicits substantial rescue of cocaine-dependent control of circadian genes. These findings have potential implications for development of strategies to treat substance abuse disorders

    Sexy splicing : regulatory interplays governing sex determination from Drosophila to mammals

    Get PDF
    A remarkable array of strategies is used to produce sexual differentiation in different species. Complex gene hierarchies govern sex determination pathways, as exemplified by the classic D. melanogaster paradigm, where an interplay of transcriptional, splicing and translational mechanisms operate. Molecular studies support the hypothesis that genetic sex determination pathways evolved in reverse order, from downstream to upstream genes, in the cascade. The recent identification of a role for the key regulatory factors SRY and WT1(+KTS) in pre-mRNA splicing indicates that important steps in the mammalian sex determination process are likely to operate at the post-transcriptional level

    Cell-specific occupancy of an extended repertoire of CREM and CREB binding loci in male germ cells

    Get PDF
    Background: CREB and CREM are closely related factors that regulate transcription in response to various stress, metabolic and developmental signals. The CREMτ activator isoform is selectively expressed in haploid spermatids and plays an essential role in murine spermiogenesis.Results: We have used chromatin immunoprecipitation coupled to sequencing (ChIP-seq) to map CREM and CREB target loci in round spermatids from adult mouse testis and spermatogonia derived GC1-spg cells respectively. We identify more than 9000 genomic loci most of which are cell-specifically occupied. Despite the fact that round spermatids correspond to a highly specialised differentiated state, our results show that they have a remarkably accessible chromatin environment as CREM occupies more than 6700 target loci corresponding not only to the promoters of genes selectively expressed in spermiogenesis, but also of genes involved in functions specific to other cell types. The expression of only a small subset of these target genes are affected in the round spermatids of CREM knockout animals. We also identify a set of intergenic binding loci some of which are associated with H3K4 trimethylation and elongating RNA polymerase II suggesting the existence of novel CREB and CREM regulated transcripts.Conclusions: We demonstrate that CREM and CREB occupy a large number of promoters in highly cell specific manner. This is the first study of CREM target promoters directly in a physiologically relevant tissue in vivo and represents the most comprehensive experimental analysis of CREB/CREM regulatory potential to date

    Light Induction of a Vertebrate Clock Gene Involves Signaling through Blue-Light Receptors and MAP Kinases

    Get PDF
    AbstractThe signaling pathways that couple light photoreception to entrainment of the circadian clock have yet to be deciphered. Two prominent groups of candidates for the circadian photoreceptors are opsins (e.g., melanopsin) and blue-light photoreceptors (e.g., cryptochromes). We have previously showed that the zebrafish is an ideal model organism in which to study circadian regulation and light response in peripheral tissues. Here, we used the light-responsive zebrafish cell line Z3 to dissect the response of the clock gene zPer2 to light. We show that the MAPK (mitogen-activated protein kinase) pathway is essential for this response, although other signaling pathways may also play a role. Moreover, action spectrum analyses of zPer2 transcriptional response to monochromatic light demonstrate the involvement of a blue-light photoreceptor. The Cry1b and Cry3 cryptochromes constitute attractive candidates as photoreceptors in this setting. Our results establish a link between blue-light photoreceptors, probably cryptochromes, and the MAPK pathway to elicit light-induced transcriptional activation of clock genes

    Impact of Sleep and Circadian Disruption on Energy Balance and Diabetes: A Summary of Workshop Discussions

    Get PDF
    A workshop was held at the National Institute for Diabetes and Digestive and Kidney Diseases with a focus on the impact of sleep and circadian disruption on energy balance and diabetes. The workshop identified a number of key principles for research in this area and a number of specific opportunities. Studies in this area would be facilitated by active collaboration between investigators in sleep/circadian research and investigators in metabolism/diabetes. There is a need to translate the elegant findings from basic research into improving the metabolic health of the American public. There is also a need for investigators studying the impact of sleep/circadian disruption in humans to move beyond measurements of insulin and glucose and conduct more in-depth phenotyping. There is also a need for the assessments of sleep and circadian rhythms as well as assessments for sleep-disordered breathing to be incorporated into all ongoing cohort studies related to diabetes risk. Studies in humans need to complement the elegant short-term laboratory-based human studies of simulated short sleep and shift work etc. with studies in subjects in the general population with these disorders. It is conceivable that chronic adaptations occur, and if so, the mechanisms by which they occur needs to be identified and understood. Particular areas of opportunity that are ready for translation are studies to address whether CPAP treatment of patients with pre-diabetes and obstructive sleep apnea (OSA) prevents or delays the onset of diabetes and whether temporal restricted feeding has the same impact on obesity rates in humans as it does in mice

    Seminiferous tubule transfection in vitro to define post-meiotic gene regulation

    Get PDF
    The electronic version of this article is the complete one and can be found online at: http://www.rbej.com/content/7/1/67Background: Post-meiotically expressed genes in the testis are essential for the proper progression of spermatogenesis, and yet, aside from the construction of individual transgenic mice using specific promoters to drive reporter plasmids, there are only very limited possibilities for relevant and quantitative analysis of gene promoters. This is due to the special nature of post-meiotic haploid cells, which to date are not represented in any appropriate cell-lines. This article reports the development of novel methodology using isolated and cultured rat seminiferous tubules in a multiwell format, into which promoter-reporter constructs can be introduced by a combination of microinjection and electroporation. Methods: Culture conditions were developed which allowed the continued incubation of isolated rat seminiferous tubules for up to 48 h without obvious cell death and loss of post-meiotic cells. Transfection of intact seminiferous tubules by microinjection and electroporation was optimized to achieve high expression efficiencies of control plasmids, using either fluorescent protein or luciferase as reporters, thereby allowing both morphological as well as quantitative assessment. Results: Successful transfection was achieved into all cell types except for mature spermatozoa. However, there appeared to be only limited cell-type specificity for the promoters used, even though these had appeared to be specific when used in transgenic animals. Conclusion: We have devised a methodology which allows relatively high throughput analysis of post-meiotic gene promoters into primary cells of intact seminiferous tubules. An apparent lack of cell-type specificity suggests that the gene fragments used do not contain sufficient targeting information, or that the transient episomal expression of the constructs does not encourage appropriate expression specificity. The results also highlight the doubtful interpretation of many studies using heterologous transfection systems to analyse post-meiotically expressed genes.Sandra Danner, Christiane Kirchhoff and Richard Ivel

    Cyclic AMP induces IPC leukemia cell apoptosis via CRE-and CDK-dependent Bim transcription

    Get PDF
    The IPC-81 cell line is derived from the transplantable BNML model of acute myelogenic leukemia (AML), known to be a reliable predictor of the clinical efficiency of antileukemic agents, like the first-line AML anthracycline drug daunorubicin (DNR). We show here that cAMP acted synergistically with DNR to induce IPC cell death. The DNR-induced death differed from that induced by cAMP by (1) not involving Bim induction, (2) being abrogated by GSK3β inhibitors, (3) by being promoted by the HSP90/p23 antagonist geldanamycin and truncated p23 and (4) by being insensitive to the CRE binding protein (CREB) antagonist ICER and to cyclin-dependent protein kinase (CDK) inhibitors. In contrast, the apoptosis induced by cAMP correlated tightly with Bim protein expression. It was abrogated by Bim (BCL2L11) downregulation, whether achieved by the CREB antagonist ICER, by CDK inhibitors, by Bim-directed RNAi, or by protein synthesis inhibitor. The forced expression of BimL killed IPC-81WT cells rapidly, Bcl2-overexpressing cells being partially resistant. The pivotal role of CREB and CDK activity for Bim transcription is unprecedented. It is also noteworthy that newly developed cAMP analogs specifically activating PKA isozyme I (PKA-I) were able to induce IPC cell apoptosis. Our findings support the notion that AML cells may possess targetable death pathways not exploited by common anti-cancer agents

    ELK1 Uses Different DNA Binding Modes to Regulate Functionally Distinct Classes of Target Genes

    Get PDF
    Eukaryotic transcription factors are grouped into families and, due to their similar DNA binding domains, often have the potential to bind to the same genomic regions. This can lead to redundancy at the level of DNA binding, and mechanisms are required to generate specific functional outcomes that enable distinct gene expression programmes to be controlled by a particular transcription factor. Here we used ChIP–seq to uncover two distinct binding modes for the ETS transcription factor ELK1. In one mode, other ETS transcription factors can bind regulatory regions in a redundant fashion; in the second, ELK1 binds in a unique fashion to another set of genomic targets. Each binding mode is associated with different binding site features and also distinct regulatory outcomes. Furthermore, the type of binding mode also determines the control of functionally distinct subclasses of genes and hence the phenotypic response elicited. This is demonstrated for the unique binding mode where a novel role for ELK1 in controlling cell migration is revealed. We have therefore uncovered an unexpected link between the type of binding mode employed by a transcription factor, the subsequent gene regulatory mechanisms used, and the functional categories of target genes controlled

    C/EBPβ-Thr217 Phosphorylation Signaling Contributes to the Development of Lung Injury and Fibrosis in Mice

    Get PDF
    mice are refractory to Bleomycin-induced lung fibrosis the molecular mechanisms remain unknown. Here we show that blocking the ribosomal S-6 kinase (RSK) phosphorylation of the CCAAT/Enhancer Binding Protein (C/EBP)-β on Thr217 (a RSK phosphoacceptor) with either a single point mutation (Ala217), dominant negative transgene or a blocking peptide containing the mutated phosphoacceptor ameliorates the progression of lung injury and fibrosis induced by Bleomycin in mice. mice with a cell permeant, C/EBPβ peptide that inhibits phosphorylation of C/EBPβ on Thr217 (40 µg instilled intracheally on day-2 and day-6 after the single Bleomycin dose) also blocked the progression of lung injury and fibrosis induced by Bleomycin. Phosphorylation of human C/EBPβ on Thr266 (human homologue phosphoacceptor) was induced in collagen-activated human lung fibroblasts in culture as well as in activated lung fibroblasts in situ in lungs of patients with severe lung fibrosis but not in control lungs, suggesting that this signaling pathway may be also relevant in human lung injury and fibrosis.These data suggest that the RSK-C/EBPβ phosphorylation pathway may contribute to the development of lung injury and fibrosis
    corecore