169 research outputs found

    Molecular Epidemiology of Ascariasis: A Global Perspective on the Transmission Dynamics of Ascaris in People and Pigs

    Get PDF
    Background The roundworm Ascaris lumbricoides infects 0.8 billion people worldwide, and Ascaris suum infects innumerable pigs across the globe. The extent of natural cross-transmission of Ascaris between pig and human hosts in different geographical settings is unknown, warranting investigation. Methods Adult Ascaris organisms were obtained from humans and pigs in Europe, Africa, Asia, and Latin America. Barcodes were assigned to 536 parasites on the basis of sequence analysis of the mitochondrial cytochrome c oxidase I gene. Genotyping of 410 worms was also conducted using a panel of microsatellite markers. Phylogenetic, population genetic, and Bayesian assignment methods were used for analysis. Results There was marked genetic segregation between worms originating from human hosts and those originating from pig hosts. However, human Ascaris infections in Europe were of pig origin, and there was evidence of cross-transmission between humans and pigs in Africa. Significant genetic differentiation exists between parasite populations from different countries, villages, and hosts. Conclusions In conducting an analysis of variation within Ascaris populations from pig and human hosts across the globe, we demonstrate that cross-transmission takes place in developing and developed countries, contingent upon epidemiological potential and local phylogeography. Our results provide novel insights into the transmission dynamics and speciation of Ascaris worms from humans and pigs that are of importance for control program

    Whipworms in humans and pigs: origins and demography

    Get PDF
    © 2016 Hawash et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The attached file is the published version of the article.NHM Repositor

    The intestinal expulsion of the roundworm Ascaris suum is associated with eosinophils, intra-epithelial T cells and decreased intestinal transit time

    Get PDF
    Ascaris lumbricoides remains the most common endoparasite in humans, yet there is still very little information available about the immunological principles of protection, especially those directed against larval stages. Due to the natural host-parasite relationship, pigs infected with A. suum make an excellent model to study the mechanisms of protection against this nematode. In pigs, a self-cure reaction eliminates most larvae from the small intestine between 14 and 21 days post infection. In this study, we investigated the mucosal immune response leading to the expulsion of A. suum and the contribution of the hepato-tracheal migration. Self-cure was independent of previous passage through the liver or lungs, as infection with lung stage larvae did not impair self-cure. When animals were infected with 14-day-old intestinal larvae, the larvae were being driven distally in the small intestine around 7 days post infection but by 18 days post infection they re-inhabited the proximal part of the small intestine, indicating that more developed larvae can counter the expulsion mechanism. Self-cure was consistently associated with eosinophilia and intra-epithelial T cells in the jejunum. Furthermore, we identified increased gut movement as a possible mechanism of self-cure as the small intestinal transit time was markedly decreased at the time of expulsion of the worms. Taken together, these results shed new light on the mechanisms of self-cure that occur during A. suum infections

    Highlights of the São Paulo ISEV workshop on extracellular vesicles in cross-kingdom communication

    Get PDF
    In the past years, extracellular vesicles (EVs) have become an important field of research since EVs have been found to play a central role in biological processes. In pathogens, EVs are involved in several events during the host–pathogen interaction, including invasion, immunomodulation, and pathology as well as parasite–parasite communication. In this report, we summarised the role of EVs in infections caused by viruses, bacteria, fungi, protozoa, and helminths based on the talks and discussions carried out during the International Society for Extracellular Vesicles (ISEV) workshop held in São Paulo (November, 2016), Brazil, entitled Cross-organism Communication by Extracellular Vesicles: Hosts, Microbes and Parasites. © 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.11Ysciescopu

    Assessing the zoonotic potential of Ascaris suum and Trichuris suis: looking to the future from an analysis of the past

    Get PDF
    Abstract The two geohelminths, Ascaris lumbricoides and Trichuris trichiura, infect more than a billion people worldwide but are only reported sporadically in the developed part of the world. In contrast, the closely related species A. suum and T. suis in pigs have a truly global distribution, with infected pigs found in most production systems. In areas where pigs and humans live in close proximity or where pig manure is used as fertilizer on vegetables for human consumption, there is a potential risk of cross-infections. We therefore review this relationship between Ascaris and Trichuris in the human and pig host, with special focus on recent evidence concerning the zoonotic potential of these parasites, and identify some open questions for future research

    Parasite worm antigens instruct macrophages to release immunoregulatory extracellular vesicles

    Get PDF
    Emerging evidence suggests that immune cells not only communicatewith each other through cytokines, chemokines, and cell surface receptors, but also by releasing small membranous structures known as extracellular vesicles (EVs). EVs carry a variety of different molecules that can be taken up by recipient cells. Parasitic worms are well known for their immunomodulatory properties, but whether they can affect immune responses by altering EV-driven communication between host immune cells remains unclear. Here we provide evidence that stimulation of bone marrow-derived macrophages (BMDMs) with soluble products of Trichuris suis (TSPs), leads to the release of EVs with anti-inflammatory properties. Specifically, we found that EVs from TSP-pulsed BMDMs, but not those from unstimulated BMDMs can suppress TNF alpha and IL-6 release in LPS-stimulated BMDMs and BMDCs. However, no polarization toward M1 or M2 was observed in macrophages exposed to EVs. Moreover, EVs enhanced reactive oxygen species (ROS) production in the exposed BMDMs, which was associated with a deregulated redox homeostasis as revealed by pathway analysis of transcriptomic data. Proteomic analysis identified cytochrome p450 (CYP450) as a potential source of ROS in EVs from TSP-pulsed BMDMs. Finally, pharmacological inhibition of CYP450 activity could suppress ROS production in those BMDMs. In summary, we find that TSPs can modulate immune responses not only via direct interactions but also indirectly by eliciting the release of EVs from BMDMs that exert anti-inflammatory effects on recipient cells.Host-parasite interactio
    corecore