120 research outputs found

    Isolated articular cartilage lesion: repair or regeneration

    Get PDF

    Spontaner und posttherapeutischer Knorpelrepair: Bewertungskriterien

    Get PDF
    Zusammenfassung: Der für das Funktionieren der großen Gelenke entscheidende Gelenkknorpel besitzt beim Erwachsenen praktische keine Reparaturkapazität, weshalb einmal entstandene Schäden chronisch erhalten bleiben und sich zumeist sogar ausbreiten und in eine Osteoarthrose überzugehen drohen. Seit einem Jahrzehnt sind verschiedene neue und innovative Therapien entwickelt worden, um Regenerate zu implantieren oder intraartikulär zu induzieren und deren Funktionalität und Belastbarkeit zu erhöhen. Ein wesentlicher Parameter zur Erfassung der Funktionalität der erzeugten Regenerate ist hierbei das morphologisch erfassbare Bild, da dieses im Moment am ehesten erlaubt, Vorraussagen über die Funktionalität und Haltbarkeit der Regenerate zu treffen. Um die vielerorts laufenden Studien international vergleichend auswertbar zu machen, wurde eine Konsensusbeurteilungsskala durch die ICRS (International Cartilage Repair Society) kürzlich veröffentlicht, welche in diesem Übersichtsartikel vorgestellt und erläutert wir

    Chitosan/polyester-based scaffolds for cartilage tissue engineering: assessment of extracellular matrix formation

    Get PDF
    Naturally derived polymers have been extensively used in scaffold production for cartilage tissue engineering. The present work aims to evaluate and characterize extracellular matrix (ECM) formation in two types of chitosan-based scaffolds, using bovine articular chondrocytes (BACs). The influence of these scaffolds’ porosity, as well as pore size and geometry, on the formation of cartilagineous tissue was studied. The effect of stirred conditions on ECM formation was also assessed. Chitosan-poly(butylene succinate) (CPBS) scaffolds were produced by compression moulding and salt leaching, using a blend of 50% of each material. Different porosities and pore size structures were obtained. BACs were seeded onto CPBS scaffolds using spinner flasks. Constructs were then transferred to the incubator, where half were cultured under stirred conditions, and the other half under static conditions for 4 weeks. Constructs were characterized by scanning electron microscopy, histology procedures, immunolocalization of collagen type I and collagen type II, and dimethylmethylene blue assay for glycosaminoglycan (GAG) quantification. Both materials showed good affinity for cell attachment. Cells colonized the entire scaffolds and were able to produce ECM. Large pores with random geometry improved proteoglycans and collagen type II production. However, that structure has the opposite effect on GAG production. Stirred culture conditions indicate enhancement of GAG production in both types of scaffold.M.L. Alves da Silva would like to acknowledge the Portuguese Foundation for Science and Technology (FCT) for her grant (SFRH/BD/28708/2006), Marie Curie Actions-ALEA JACTA EST (MEST-CT-2004-008104), European NoE EXPERTISSUES (NMP3-CT-2004-500283), IP GENOSTEM (LSHB-CT-2003-503161) and CARTISCAFF (POCTI/SAUIBMA/58982

    Augmentation of osteochondral repair with hyperbaric oxygenation: a rabbit study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current treatments for osteochondral injuries often result in suboptimal healing. We hypothesized that the combination of hyperbaric oxygen (HBO) and fibrin would be superior to either method alone in treating full-thickness osteochondral defects.</p> <p>Methods</p> <p>Osteochondral repair was evaluated in 4 treatment groups (control, fibrin, HBO, and HBO+fibrin groups) at 2-12 weeks after surgical injury. Forty adult male New Zealand white rabbits underwent arthrotomy and osteochondral surgery on both knees. Two osteochondral defects were created in each femoral condyle, one in a weight-bearing area and the other in a non-weight-bearing area. An exogenous fibrin clot was placed in each defect in the right knee. Left knee defects were left empty. Half of the rabbits then underwent hyperbaric oxygen therapy. The defects in the 4 treatment groups were then examined histologically at 2, 4, 6, 8, and 12 weeks after surgery.</p> <p>Results</p> <p>The HBO+fibrin group showed more rapid and more uniform repair than the control and fibrin only groups, but was not significantly different from the group receiving HBO alone. In the 2 HBO groups, organized repair and good integration with adjacent cartilage were seen at 8 weeks; complete regeneration was observed at 12 weeks.</p> <p>Conclusions</p> <p>HBO significantly accelerated the repair of osteochondral defects in this rabbit model; however, the addition of fibrin produced no further improvement.</p

    Survival of Chondrocytes in Rabbit Septal Cartilage After Electromechanical Reshaping

    Get PDF
    Electromechanical reshaping (EMR) has been recently described as an alternative method for reshaping facial cartilage without the need for incisions or sutures. This study focuses on determining the short- and long-term viability of chondrocytes following EMR in cartilage grafts maintained in tissue culture. Flat rabbit nasal septal cartilage specimens were bent into semi-cylindrical shapes by an aluminum jig while a constant electric voltage was applied across the concave and convex surfaces. After EMR, specimens were maintained in culture media for 64 days. Over this time period, specimens were serially biopsied and then stained with a fluorescent live–dead assay system and imaged using laser scanning confocal microscopy. In addition, the fraction of viable chondrocytes was measured, correlated with voltage, voltage application time, electric field configuration, and examined serially. The fraction of viable chondrocytes decreased with voltage and application time. High local electric field intensity and proximity to the positive electrode also focally reduced chondrocyte viability. The density of viable chondrocytes decreased over time and reached a steady state after 2–4 weeks. Viable cells were concentrated within the central region of the specimen. Approximately 20% of original chondrocytes remained viable after reshaping with optimal voltage and application time parameters and compared favorably with conventional surgical shape change techniques such as morselization

    An Ultrasound Assisted Anchoring Technique (BoneWelding® Technology) for Fixation of Implants to Bone – A Histological Pilot Study in Sheep

    Get PDF
    The BoneWelding® Technology offers new opportunities to anchor implants within bone. The technology melted the surface of biodegradable polymer pins by means of ultrasound energy to mould material into the structures of the predrilled bone. Temperature changes were measured at the sites of implantation in an in vitro experiment. In the in vivo part of the study two types of implants were implanted in the limb of sheep to investigate the biocompatibility of the method. One implant type was made of PL-DL-lactide (PLA), the second one was a titanium core partially covered with PLA. Healing period was 2 and 6 months, with 3 sheep per group. Bone samples were evaluated radiologically, histologically and histomorphometrically for bone remodeling and inflammatory reactions. Results demonstrated mild and short temperature increase during insertion. New bone formed at the implant without evidence of inflammatory reaction. The amount of adjacent bone was increased compared to normal cancellous bone. It was concluded that the BoneWelding® Technology proved to be a biocompatible technology to anchor biodegradable as well as titanium-PLA implants in bone
    corecore