50 research outputs found

    Arte y mundo hoy: Acerca de la vigencia de la meditación heideggeriana sobre la obra de arte

    Get PDF
    La interpretación del arte de Heidegger destaca por su radicalidad y originalidad. Para el pensador alemán, la esencia del arte se mantendrá oculta mientras no se ponga en conexión dicha actividad productiva con la pregunta por el ser. Al proceder así, se nos revela, por un lado, la constitutiva dimensión ontológica del arte y su íntima vinculación con el fenómeno de la verdad y, por otro, la insuficiencia de los tradicionales planteamientos sobre el arte y de la estética como disciplina filosófica. ¿Continúa vigente dicho planteamiento ontológico?, ¿es compatible con las nuevas condiciones de la producción artística emergentes en el actual mundo científico-técnico?Palabras Clave: arte, verdad, ser, mundo, belleza, técnica estética, Heidegger.AbstractHeidegger’s interpretation of art stands out for its radicalism and originality. For the German thinker the essence of art will remain hidden as long as the productive activity is not connected to the question of being. In doing so, the constitutive ontological dimension of art and its intimate connection with the phenomenon of truth is revealed to us on the one hand, and on the other, the failure of traditional approaches to art and aesthetics as a philosophical discipline. Is this ontological approach still valid? And is it compatible with the new conditions of art production which emerge in today’s scientific-technical world?Keywords: art, truth, being, world, beauty, aesthetic, technique, Heidegger.</p

    Modeling elastic wave propagation in fluid-filled boreholes drilled in nonhomogeneous media: BEM – MLPG versus BEM-FEM coupling

    Get PDF
    The efficiency of two coupling formulations, the boundary element method (BEM)-meshless local Petrov–Galerkin (MLPG) versus the BEM-finite element method (FEM), used to simulate the elastic wave propagation in fluid-filled boreholes generated by a blast load, is compared. The longitudinal geometry is assumed to be invariant in the axial direction (2.5D formulation). The material properties in the vicinity of the borehole are assumed to be nonhomogeneous as a result of the construction process and the ageing of the material. In both models, the BEM is used to tackle the propagation within the fluid domain inside the borehole and the unbounded homogeneous domain. The MLPG and the FEM are used to simulate the confined, damaged, nonhomogeneous, surrounding borehole, thus utilizing the advantages of these methods in modeling nonhomogeneous bounded media. In both numerical techniques the coupling is accomplished directly at the nodal points located at the common interfaces. Continuity of stresses and displacements is imposed at the solid–solid interface, while continuity of normal stresses and displacements and null shear stress are prescribed at the fluid–solid interface. The performance of each coupled BEM-MLPG and BEM-FEM approach is determined using referenced results provided by an analytical solution developed for a circular multi-layered subdomain. The comparison of the coupled techniques is evaluated for different excitation frequencies, axial wavenumbers and degrees of freedom (nodal points).Ministerio de Economía y Competitividad BIA2013-43085-PCentro Informático Científico de Andalucía (CICA

    A 2.5D time-frequency domain model for railway induced soil-building vibration due to railway defects

    Get PDF
    A new hybrid time-frequency modelling methodology is proposed to simulate the generation of railway vibration caused by singular defects (e.g. joints, switches, crossings), and its propagation through the track, soil and into nearby buildings. To create the full source-to-received model, first the force density due to wheel-rail-defect interaction is calculated using a time domain finite element vehicle-track-soil model. Next, the frequency domain track-soil transfer function is calculated using a 2.5D boundary/finite element approach and coupled with the force densities to recover the free-field response. Finally, the soil-structure interaction of buildings close to the line is computed using a time domain approach. The effect of defect type, train speed and building type (4-storey office block and 8-storey apartment building) on a variety of commonly used international vibration metrics (one-third octaves, PPV, MTVV) is then investigated. It is found that train speed doesn't correlate with building vibration and different defect types have a complex relationship with vibration levels both in the ground and buildings. The 8-storey apartment building has a frequency response dominated by a narrow frequency range, whereas the modal contribution of the 4-storey office building is over a wider frequency band. This results in the 8-storey building having a higher response

    Influence of track modelling in modal parameters of railway bridges composed by single-track adjacent decks

    Get PDF
    [EN] A significant number of railway bridges composed by simply-supported (SS) spans are present in existing railway lines. Special attention must be paid to short to medium span length structures, as they are prone to experience high vertical acceleration levels at the deck, due to their low weight and damping, compromising the travelling comfort and the structural integrity. The accurate prediction of the dynamic response of these bridges is a complex issue since it is affected by uncertain factors such as structural damping and complex interaction mechanisms such as vehicle-bridge, soil-structure or track-bridge interaction. Concerning track-bridge interaction, experimental evidences of a dynamic coupling exerted by the ballasted track between subsequent SS spans and also between structurally independent single-track twin adjacent decks have been reported in the literature [1, 2]. Nevertheless, this phenomenon is frequently disregarded due to the computational cost of models including the track and due to the uncertainties in the mechanical parameters that define the track system. The present work contributes to the study of the coupling effect exerted by the ballasted track between independent structures in railway bridges. With this purpose two 3D finite element (FE) track-bridge interaction models are implemented. The former includes a continuous representation of the track components meshing the sleepers, ballast and sub-ballast with solid FE. In the latter, the track is represented as a 2D discrete three-layer model where the mass, stiffness and damping of the components are concentrated at the sleepers locations. The numerical models are updated with experimental measurements performed on an existing railway bridge in a view to evaluate (i) the influence of the track continuity on the bridge modal parameters and on the train-induced vibrations; (ii) the adequacy of the implemented numerical models and (iii) the importance of the track-bridge interaction for an accurate prediction of the vertical acceleration levels under operating conditions.The authors would like to acknowledge the financial support provided by the Spanish Ministry of Science and Innovation under research project PID2019-109622RB; FEDER Andalucía 2014-2020 Operational Program for project US-126491; Generalitat Valenciana and Universitat Jaume I under research projects AICO2019/175 and UJI/A2008/06; and the Andalusian Scientific Computing Centre (CICA).Sánchez Quesada, J.; Moliner, E.; Romero, A.; Galvín, P.; Martínez-Rodrigo, M. (2022). Influence of track modelling in modal parameters of railway bridges composed by single-track adjacent decks. En Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference. Editorial Universitat Politècnica de València. 278-287. https://doi.org/10.4995/YIC2021.2021.12283OCS27828

    Scoping methodology to asses induced vibration by railway traffic in buildings

    Get PDF
    This work presents a scoping model to predict ground-borne railway vibration levels within buildings considering soil-structure interaction (SSI). It can predict the response of arbitrarily complex buildings in a fraction of the time typically required to analyse a complex SSI problem, and thus provides a practical tool to rapidly analyse the vibration response of numerous structures near railway lines. The tool is designed for use in cases where the ground-borne vibration is known, and thus can be used as model input. Therefore in practice, for the case of a new line, the ground motion can be computed numerically, or alternatively, for the case of new buildings to be constructed near an existing line, it can be recorded directly (e.g. using accelerometers) and used as model input. To achieve these large reductions in computational time, the model discretises the ground-borne vibration in the free field into a frequency range corresponding to the modes that characterize the dynamic building response. After the ground-borne response spectra that corresponds with the incident wave field is estimated, structural vibration levels are computed using modal superposition, thus avoiding intensive soil-structure interaction computations. The model is validated using a SSI problem and by comparing results against a more complex finite element-boundary element model. Finally, the new scoping model is then used to analyse structural-borne vibration. The results show that the scoping model provides a powerful tool for use during the early design stages of a railway system when a large number of structures require analysis

    Scoping assessment of free-field vibrations due to railway traffic

    Get PDF
    The number of railway lines both operational and under construction is growing rapidly, leading to an increase in the number of buildings adversely affected by ground-borne vibration (e.g. shaking and indoor noise). Post-construction mitigation measures are expensive, thus driving the need for early stage prediction, during project planning/development phases. To achieve this, scoping models (i.e. desktop studies) are used to assess long stretches of track quickly, in absence of detailed design information. This paper presents a new, highly customisable scoping model, which can analyse the effect of detailed changes to train, track and soil on ground vibration levels. The methodology considers soil stiffness and the combination of both the dynamic and static forces generated due to train passage. It has low computational cost and can predict free-field vibration levels in accordance with the most common international standards. The model uses the direct stiffness method to compute the soil Green's function, and a novel two-and-a-half dimensional (2.5D) finite element strategy for train-track interaction. The soil Green's function is modulated using a neural network (NN) procedure to remove the need for the time consuming computation of track-soil coupling. This modulation factor combined with the new train-track approach results in a large reduction in computational time. The proposed model is validated by comparing track receptance, free-field mobility and soil vibration with both field experiments and a more comprehensive 2.5D combined finite element-boundary element (FEM-BEM) model. A sensitivity analysis is undertaken and it is shown that track type, soil properties and train speed have a dominant effect on ground vibration levels. Finally, the possibility of using average shear wave velocity introduced for seismic site response analysis to predict vibration levels is investigated and shown to be reasonable for certain smooth stratigraphy's.Ministerio de Economía y Competitividad - BIA2016-75042-C2-1-

    Scoping assessment of free-field vibrations due to railway traffic

    Get PDF
    The number of railway lines both operational and under construction is growing rapidly, leading to an increase in the number of buildings adversely affected by ground-borne vibration (e.g. shaking and indoor noise). Post-construction mitigation measures are expensive, thus driving the need for early stage prediction, during project planning/development phases. To achieve this, scoping models (i.e. desktop studies) are used to assess long stretches of track quickly, in absence of detailed design information. This paper presents a new, highly customisable scoping model, which can analyse the effect of detailed changes to train, track and soil on ground vibration levels. The methodology considers soil stiffness and the combination of both the dynamic and static forces generated due to train passage. It has low computational cost and can predict free-field vibration levels in accordance with the most common international standards. The model uses the direct stiffness method to compute the soil Green's function, and a novel two-and-a-half dimensional (2.5D) finite element strategy for train-track interaction. The soil Green's function is modulated using a neural network (NN) procedure to remove the need for the time consuming computation of track-soil coupling. This modulation factor combined with the new train-track approach results in a large reduction in computational time. The proposed model is validated by comparing track receptance, free-field mobility and soil vibration with both field experiments and a more comprehensive 2.5D combined finite element-boundary element (FEM-BEM) model. A sensitivity analysis is undertaken and it is shown that track type, soil properties and train speed have a dominant effect on ground vibration levels. Finally, the possibility of using average shear wave velocity introduced for seismic site response analysis to predict vibration levels is investigated and shown to be reasonable for certain smooth stratigraphy's

    The effect of rolling stock characteristics on differential railway track settlement: An engineering-economic model

    Get PDF
    Railway track geometry deteriorates under repeated train loading. When linespeed is increased or new rolling-stock is introduced this can alter the future rate of change of differential settlement and track geometry. Therefore this paper presents a novel combined engineering-economic approach to investigate the effect of increasing train speeds, adding additional passenger movements, and adding additional freight movements to an existing line. Firstly a numerical algorithm is presented to compute differential track settlement. An important novelty of the model is its use of the wavenumber finite element method coupled with settlement relationships in a manner that allows for track irregularities to evolve after every load passage (i.e. taking into account the evolution of the track unevenness profile before applying each subsequent train passage). Unlike traditional approaches this allows the model to faithfully simulate mixed traffic conditions, including the coupled interactions between different rolling stock types and track geometry. The engineering model is used to predict tamping intervals, and then coupled with an economic model capable of calculating deterioration elasticities and marginal costs. It is shown that higher speeds result in higher dynamic forces and cause a faster rate of deterioration of track geometry, thus increasing marginal cost. The model is then used to investigate the effect of adding additional train movements to a passenger line. It is shown that additional movements increase the rate of track degradation and marginal costs, particularly if the additional traffic is freight. This is because freight vehicles typically have one only layer of (stiff) suspension, thus generating elevated dynamic forces compared to passenger vehicles

    A transfer function method to predict building vibration and its application to railway defects

    Get PDF
    This work presents a simplified method to evaluate building shaking due to arbitrary base excitations, and an example application to railway problems. The model requires minimal computational effort and can be applied to a wide range of footing shapes, thus making it attractive for scoping-type analysis. It uses the soil excitation spectrum at the building footing location as it’s input, and computes the building response at any arbitrary location within it’s 3D structure. To show an application of the model versatility, it is used to compute building response due to a variety of singular railway defects (e.g. switches/crossings). It is however suitable for more general applications including railway problems without defects. The approach is novel because current railway scoping models do not use soil-structure transfer functions combined with free-field response to estimate building vibration by railway defects. First the soil-structure interaction approach is outlined for both rigid and flexible footings. Then it is validated by comparing results against a comprehensive fully-coupled 3D FEM-BEM model. Finally, it is used to analyse the effect of a variety of variables related to railway defects on building response. Local track defects are shown to have a strong influence on building vibrations. Further, vibration levels close to the threshold of human comfort are found in buildings close to the railway line. Overall the new approach allows for the computation of building vibrations accounting for soil-structure interaction, floor amplification and the measured/computed free-field response due to railway traffic using minimal computational effort

    Fast simulation of railway bridge dynamics accounting for soil–structure interaction

    Get PDF
    A novel numerical methodology is presented to solve the dynamic response of railway bridges under the passage of running trains, considering soil–structure interaction. It is advantageous compared to alternative approaches because it permits, (i) consideration of complex geometries for the bridge and foundations, (ii) simulation of stratified soils, and, (iii) solving the train-bridge dynamic problem at minimal computational cost. The approach uses sub-structuring to split the problem into two coupled interaction problems: the soil–foundation, and the soil–foundation–bridge systems. In the former, the foundation and surrounding soil are discretized with Finite Elements (FE), and padded with Perfectly Match Layers to avoid boundary reflections. Considering this domain, the equivalent frequency dependent dynamic stiffness and damping characteristics of the soil–foundation system are computed. For the second sub-system, the dynamic response of the structure under railway traffic is computed using a FE model with spring and dashpot elements at the support locations, which have the equivalent properties determined using the first sub-system. This soil–foundation–bridge model is solved using complex modal superposition, considering the equivalent dynamic stiffness and damping of the soil–foundation corresponding to each natural frequency. The proposed approach is then validated using both experimental measurements and an alternative Finite Element–Boundary Element (FE–BE) methodology. A strong match is found and the results discussed
    corecore