The efficiency of two coupling formulations, the boundary element method (BEM)-meshless local Petrov–Galerkin (MLPG) versus the BEM-finite element method (FEM), used to simulate the elastic wave propagation in fluid-filled boreholes generated by a blast load, is compared. The longitudinal geometry is assumed to be invariant in the axial direction (2.5D formulation). The material properties in the vicinity of the borehole are assumed to be nonhomogeneous as a result of the construction process and the ageing of the material. In both models, the BEM is used to tackle the propagation within the fluid domain inside the borehole and the unbounded homogeneous domain. The MLPG and the FEM are used to simulate the confined, damaged, nonhomogeneous, surrounding borehole, thus utilizing the advantages of these methods in modeling nonhomogeneous bounded media. In both numerical techniques the coupling is accomplished directly at the nodal points located at the common interfaces. Continuity of stresses and displacements is imposed at the solid–solid interface, while continuity of normal stresses and displacements and null shear stress are prescribed at the fluid–solid interface. The performance of each coupled BEM-MLPG and BEM-FEM approach is determined using referenced results provided by an analytical solution developed for a circular multi-layered subdomain. The comparison of the coupled techniques is evaluated for different excitation frequencies, axial wavenumbers and degrees of freedom (nodal points).Ministerio de Economía y Competitividad BIA2013-43085-PCentro Informático Científico de Andalucía (CICA