334 research outputs found
Experimental Quantification of the Effect of Nonlinearities on the EIS Spectra of the Cathodic Electrode of an Alkaline Electrolyzer
[EN] Electrochemical impedance spectroscopy (EIS) is a very powerful tool to study the behavior of electrochemical systems. According to Ohm¿s generalized law, the impedance concept is only valid if the linearity condition is met. In the case that the linearity condition is not achieved, the obtained impedance spectra will present distortions which may lead to biased or even erroneous results and conclusions. In this work, an experimental quantification of the effect of nonlinearities on EIS spectra was performed in order to determine
the order of magnitude of the effect of the nonlinearity of the system on the obtained spectra of the cathodic electrode of an alkaline electrolyzer.The authors are very grateful to the Generalitat Valenciana for its economic support in form of Vali+d grant (Ref: ACIF-2013-268).Giner-Sanz, J.; Ortega, E.; Pérez-Herranz, V. (2017). Experimental Quantification of the Effect of Nonlinearities on the EIS Spectra of the Cathodic Electrode of an Alkaline Electrolyzer. Fuel Cells. 17(3):391-401. https://doi.org/10.1002/fuce.201600137S39140117
Central extensions of the families of quasi-unitary Lie algebras
The most general possible central extensions of two whole families of Lie
algebras, which can be obtained by contracting the special pseudo-unitary
algebras su(p,q) of the Cartan series A_l and the pseudo-unitary algebras
u(p,q), are completely determined and classified for arbitrary p,q. In addition
to the su(p,q) and u({p,q}) algebras, whose second cohomology group is well
known to be trivial, each family includes many non-semisimple algebras; their
central extensions, which are explicitly given, can be classified into three
types as far as their properties under contraction are involved. A closed
expression for the dimension of the second cohomology group of any member of
these families of algebras is given.Comment: 23 pages. Latex2e fil
Effluents from the copper electrorefining as a secondary source of antimony: Role of mass transfer on the recovery by electrodeposition
The limited availability of antimony has increased the need for exploiting alternative sources to its direct extraction from stibnite deposits. Furthermore, introducing recovery techniques in industries where antimony is released in wastewaters leads to more responsible production routes. In this work, electrodeposition is employed to recover the antimony present in a secondary waste effluent of the copper electrorefining that is highly concentrated in hydrochloric acid. The electrochemical characterization of the system was conducted by voltammetry to identify a range of suitable operating conditions for the potentiostatic and galvanostatic electro-recovery of antimony. In potentiostatic mode, the progress of the secondary electrode reactions of hydrogen and chlorine evolution at potentials more cathodic than −0.38 V vs. Ag/AgCl causes the detachment and redissolution of the deposited antimony. Operating under galvanostatic control, similar effects were observed when the limiting current density is exceeded. Current efficiency and specific energy consumption values above 50 % and below 65 kW·h·kg−1, were achieved below the limiting current density (1.265 mA·cm−2). The operational range where electrodeposition of antimony is accelerated at increasing current densities can be broadened at intensified hydrodynamic conditions and higher concentrations of antimony. The detrimental effect of the hydrogen evolution reaction on the recovery of antimony decreases at high HCl concentrations
Voltammetric and electrodeposition study for the recovery of antimony from effluents generated in the copper electrorefining process
Antimony is a metalloid with limited availability as a primary resource, but it is commonly found as an impurity in effluents generated in the copper metallurgy. Thus, the development of clean and selective processes to recover antimony from these wastewaters would improve the sustainability of the copper production. In this work, an emulated effluent of the copper electrorefining industry that contains antimony and hydrochloric acid was characterized by means of voltammetric and electrodeposition tests using two different cell configurations: a static cell, and a dynamic cell with a rotating disk electrode (RDE). Voltammograms were obtained at varying hydrochloric acid and antimony concentrations, inversion potentials, scan rates and RDE rotation rates. Two main conclusions were drawn: (a) the deposition of antimony is a mass transfer-controlled process; and (b) an increase in hydrochloric acid concentration improves the deposition of antimony. The diffusion coefficient of antimony species was obtained applying the Randles-ˇ Sevˇcík and the Levich equations; both of them providing very similar values (5.29 ± 0.20 ⋅ 10− 6 cm2 s − 1). The effective electrodeposition of antimony from highly concentrated hydrochloric acid solutions was demonstrated. The surface examination of the electrodes revealed that compact and adherent deposits of antimony could be obtained under operating conditions that minimize the hydrogen evolution reaction in both potentiostatic and galvanostatic modes. Intensified convective regimes by using the RDE improve the supply of dissolved antimony towards the electrode surface, thus leading to a notorious increase in current density and, consequently, in the rate of antimony deposition
Study of the chlorfenvinphos pesticide removal under different anodic materials and different reactor configuration
The present manuscript focuses on the study of the electrochemical oxidation of the insecticide Chlorfenvinphos (CVP). The assays were carried out under galvanostatic conditions using boron-doped diamond (BDD) and lowcost tin dioxide doped with antimony (Sb-doped SnO2) as anodes. The influence of the operating variables, such as applied current density, presence or absence of a cation-exchange membrane and concentration of supporting electrolyte, was discussed. The results revealed that the higher applied current density the higher degradation and mineralization of the insecticide for both anodes. The presence of the membrane and the highest concentration of Na2SO4 studied (0.1 M) as a supporting electrolyte benefited the oxidation process of CVP using the BDD electrode, while with the ceramic anode the elimination of CVP was lower under these experimental conditions. Although the BDD electrode showed the best performance, ceramic anodes appear as an interesting alternative as they were able to degrade CVP completely for the highest applied current density values. Toxicity tests revealed that the initial solution of CVP was more toxic than the samples treated with the ceramic electrode, while using the BDD electrode the toxicity of the sample increased
On the bicrossproduct structures for the family of algebras
It is shown that the family of deformed algebras has a different bicrossproduct
structure for each in analogy to the undeformed case.Comment: Latex2e file. 14 page
Treatment of spent pickling baths coming from hot dip galvanizing by means of an electrochemical membrane reactor
The performance of a one (OCR) and a two-compartment electrochemical reactor in the presence of a cation-exchange membrane (CEM) for the zinc recovery present in the spent pickling baths is analyzed in this paper under galvanostatic control. These solutions, which mainly contain ZnCl2 and FeCl2 in aqueous HCl media, come from the hot dip galvanizing industry. The effect of the applied current, the dilution factor of the baths and the presence or absence of initial cathodic zinc is also studied.
For the 1:50 diluted spent bath, OCR experiments initially present higher values of the figures of merit than those obtained in the presence of the CEM since zinc is close to the cathode from the first electrolysis instants. However, at long electrolysis times, OCR presents zinc redissolution for all the current values tested due to the chlorine and iron presence close to the zinc deposits. In addition, the iron codeposition phenomenon is also observed in the OCR experiments when pH values are close to 2. On the other hand, CEM experiments become very similar to the OCR experiments at long time values since the CEM under these experimental conditions prevents zinc redissolution phenomenon and also iron codeposition.
When the 1:50 diluted bath is concentred to 1:10, OCR experiments present the same tendency as that observed for the 1:50 dilution factor but the effect of zinc redissolution is increased due to the greater amount of chlorine generated in the anode. Under these experimental conditions, iron deposition has also been observed in the presence of the cation-exchange membrane as the rate of zinc deposition is greater than that of zinc transport through the membrane, and the zinc/iron ratio in the cathodic compartment is not high enough to prevent iron codeposition. In both cases, the pH values when iron codeposits with zinc are close to 2 and the zinc/iron ratio is below 0.6. The presence of initial zinc in the cathodic compartment of the electrochemical reactor enhances the reactor performance since it allows the zinc–iron separation in one single step and avoids the zinc redissolution phenomenon.The authors want to express their gratitude to the Generalitat Valenciana for a postgraduate grant (GV/2010/029) and to the Ministerio de Economia y Competitividad for financing the project number CTQ2012-37450-C02-01/PPQ.Carrillo Abad, J.; García Gabaldón, M.; Pérez Herranz, V. (2014). Treatment of spent pickling baths coming from hot dip galvanizing by means of an electrochemical membrane reactor. Desalination. 343:38-47. https://doi.org/10.1016/j.desal.2013.11.040S384734
Graded contractions and bicrossproduct structure of deformed inhomogeneous algebras
A family of deformed Hopf algebras corresponding to the classical maximal
isometry algebras of zero-curvature N-dimensional spaces (the inhomogeneous
algebras iso(p,q), p+q=N, as well as some of their contractions) are shown to
have a bicrossproduct structure. This is done for both the algebra and, in a
low-dimensional example, for the (dual) group aspects of the deformation.Comment: LaTeX file, 20 pages. Trivial changes. To appear in J. Phys.
Study of the electrochemical behaviour of a 300 W PEM fuel cell stack by Electrochemical Impedance Spectroscopy
Electrochemical Impedance Spectroscopy (EIS) is a suitable and powerful diagnostic testing method for fuel cells because it is non-destructive and provides useful information about fuel cell performance and its components. In this work, EIS measurements were carried out on a 300 W stack with 20 elementary cells. Electrochemical impedance spectra were recorded either on each cell or on the stack. Parameters of a Randles-like equivalent circuit were fitted to the experimental data. In order to improve the quality of the fit, the classical Randles cell was extended by changing the standard plane capacitor into a constant phase element (CPE). The effects of output current, cell position, operating temperature and humidification temperature on the impedance spectra were studied.This work was supported by Generalitat Valenciana (PROMETEO/2010/023).Pérez Page, M.; Pérez Herranz, V. (2014). Study of the electrochemical behaviour of a 300 W PEM fuel cell stack by Electrochemical Impedance Spectroscopy. International Journal of Hydrogen Energy. 39(8):4009-4015. https://doi.org/10.1016/j.ijhydene.2013.05.121S4009401539
Montecarlo based quantitative Kramers-Kronig test for PEMFC impedance spectrum validation
Electrochemical Impedance Spectroscopy (EIS) is a very powerful tool to study the behaviour of electrochemical systems. At present, it is widely used in the fuel cell field in order to study challenging cutting edge issues as membrane drying or gas diffusion layer flooding amongst others. The proper analysis of impedance data requires the fulfilment of four fundamental conditions: causality, linearity, stability and finiteness. The non compliance with any of these conditions may lead to biased, or even misguided, conclusions. Therefore it is critical to verify the compliance of these conditions before accepting any analysis performed on an experimental spectrum. This is even more important in a fuel cell experimental spectrum analysis, since fuel cells are markedly non stationary systems. The aim of this work is to establish an impedance spectrum quantitative validation technique to validate the whole experimental spectrum and to identify the individual points within a spectrum that do not comply any of the four conditions, in order to remove these inconsistent points from the analysis. The designed validation method consists in a Kramers Kronig (KK) validation test, by equivalent electrical circuit fitting, coupled with a Montecarlo error propagation method. In a first step, the experimental spectrum is fitted to a particular electrical equivalent circuit, which satisfies the KK relations. Then, in a second step, a statistical Montecarlo method is used in order to propagate the model fitting parameter uncertainty through the model. Using this approach, a consistency region is built for a given confidence level: the experimental points inside this region are considered consistent for the given confidence level, whereas the outside points are rejected. The method was used on PEMFC experimental impedance spectra; and it successfully managed to identify inconsistent points, associated to no stationarities.The authors are very grateful to the Generalitat Valenciana for its economic support in form of Vali+d grant (Ref: ACIF-2013-268).Giner Sanz, JJ.; Ortega Navarro, EM.; Pérez-Herranz, V. (2015). Montecarlo based quantitative Kramers-Kronig test for PEMFC impedance spectrum validation. International Journal of Hydrogen Energy. 40(34):11279-11293. https://doi.org/10.1016/j.ijhydene.2015.03.135S1127911293403
- …