17,164 research outputs found

    Fixing the Solar Neutrino Parameters with Sterile Neutrinos

    Full text link
    Neutrino mixing matrix appears to be close to bimaximal mixing, but for the solar mixing angle which is definitively smaller than forty five degrees. Whereas it seems quite easy to understand bimaximal mixing with the use of new global symmetries, as in models using LeLμLτL_e - L_\mu - L_\tau, understanding the about to eleven degrees of deviation in the observed solar angle seems less simple. We suggest that such a deviation could be due to a light sterile neutrino that mixes with the active sector. The mass scale needed to produce the effect has to be smaller than atmospheric scale, and it would introduce a new mass squared difference which should be smaller than the solar scale. We present a toy model that exemplifies these features.Comment: 19 pages, two figures. Discussion extended. References adde

    Structure of vortices in two-component Bose-Einstein condensates

    Get PDF
    We develop a three-dimensional analysis of the phase separation of two-species Bose-Einstein condensates in the presence of vorticity within the Thomas-Fermi approximation. We find different segregation features according to whether the more repulsive component is in a vortex or in a vortex-free state. An application of this study is aimed at describing systems formed by two almost immiscible species of rubidium-87 that are commonly used in Bose-Einstein condensation experiments. In particular, in this work we calculate the density profiles of condensates for the same conditions as the states prepared in the experiments performed at JILA [Matthews et al., Phys. Rev. Lett. 83, 2498 (1999)]Comment: 4 pages, 3 figure

    Spatial Interpolants

    Full text link
    We propose Splinter, a new technique for proving properties of heap-manipulating programs that marries (1) a new separation logic-based analysis for heap reasoning with (2) an interpolation-based technique for refining heap-shape invariants with data invariants. Splinter is property directed, precise, and produces counterexample traces when a property does not hold. Using the novel notion of spatial interpolants modulo theories, Splinter can infer complex invariants over general recursive predicates, e.g., of the form all elements in a linked list are even or a binary tree is sorted. Furthermore, we treat interpolation as a black box, which gives us the freedom to encode data manipulation in any suitable theory for a given program (e.g., bit vectors, arrays, or linear arithmetic), so that our technique immediately benefits from any future advances in SMT solving and interpolation.Comment: Short version published in ESOP 201

    Trading interactions for topology in scale-free networks

    Full text link
    Scale-free networks with topology-dependent interactions are studied. It is shown that the universality classes of critical behavior, which conventionally depend only on topology, can also be explored by tuning the interactions. A mapping, γ=(γμ)/(1μ)\gamma' = (\gamma - \mu)/(1-\mu), describes how a shift of the standard exponent γ\gamma of the degree distribution P(q)P(q) can absorb the effect of degree-dependent pair interactions Jij(qiqj)μJ_{ij} \propto (q_iq_j)^{-\mu}. Replica technique, cavity method and Monte Carlo simulation support the physical picture suggested by Landau theory for the critical exponents and by the Bethe-Peierls approximation for the critical temperature. The equivalence of topology and interaction holds for equilibrium and non-equilibrium systems, and is illustrated with interdisciplinary applications.Comment: 4 pages, 5 figure

    Absence of a Finite-Temperature Melting Transition in the Classical Two-Dimensional One-Component Plasma

    Full text link
    Vortices in thin-film superconductors are often modelled as a system of particles interacting via a repulsive logarithmic potential. Arguments are presented to show that the hypothetical (Abrikosov) crystalline state for such particles is unstable at any finite temperature against proliferation of screened disclinations. The correlation length of crystalline order is predicted to grow as 1/T\sqrt{1/T} as the temperature TT is reduced to zero, in excellent agreement with our simulations of this two-dimensional system.Comment: 3 figure

    Diffusion dynamics on multiplex networks

    Get PDF
    We study the time scales associated to diffusion processes that take place on multiplex networks, i.e. on a set of networks linked through interconnected layers. To this end, we propose the construction of a supra-Laplacian matrix, which consists of a dimensional lifting of the Laplacian matrix of each layer of the multiplex network. We use perturbative analysis to reveal analytically the structure of eigenvectors and eigenvalues of the complete network in terms of the spectral properties of the individual layers. The spectrum of the supra-Laplacian allows us to understand the physics of diffusion-like processes on top of multiplex networks.Comment: 6 Pages including supplemental material. To appear in Physical Review Letter

    Vector magnetic hysteresis of hard superconductors

    Full text link
    Critical state problems which incorporate more than one component for the magnetization vector of hard superconductors are investigated. The theory is based on the minimization of a cost functional C[H(x)]{\cal C}[\vec{H}(\vec{x})] which weighs the changes of the magnetic field vector within the sample. We show that Bean's simplest prescription of choosing the correct sign for the critical current density JcJ_c in one dimensional problems is just a particular case of finding the components of the vector Jc\vec{J}_c. Jc\vec{J}_c is determined by minimizing C{\cal C} under the constraint JΔ(H,x)\vec{J}\in\Delta (\vec{H},\vec{x}), with Δ\Delta a bounded set. Upon the selection of different sets Δ\Delta we discuss existing crossed field measurements and predict new observable features. It is shown that a complex behavior in the magnetization curves may be controlled by a single external parameter, i.e.: the maximum value of the applied magnetic field HmH_m.Comment: 10 pages, 9 figures, accepted in Phys. Rev.

    Characterization of bacterial communities associated with Brassica napus L. growing on a Zn-contaminated soil and their effects on root growth

    Get PDF
    peerreview_statement: The publishing and review policy for this title is described in its Aims & Scope. aims_and_scope_url: http://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=bijp20The attached document is the author's final accepted/submitted version of the journal article. You are advised to consult the publisher's version if you wish to cite from it

    Probing for Instanton Quarks with epsilon-Cooling

    Full text link
    We use epsilon-cooling, adjusting at will the order a^2 corrections to the lattice action, to study the parameter space of instantons in the background of non-trivial holonomy and to determine the presence and nature of constituents with fractional topological charge at finite and zero temperature for SU(2). As an additional tool, zero temperature configurations were generated from those at finite temperature with well-separated constituents. This is achieved by "adiabatically" adjusting the anisotropic coupling used to implement finite temperature on a symmetric lattice. The action and topological charge density, as well as the Polyakov loop and chiral zero-modes are used to analyse these configurations. We also show how cooling histories themselves can reveal the presence of constituents with fractional topological charge. We comment on the interpretation of recent fermion zero-mode studies for thermalized ensembles at small temperatures.Comment: 26 pages, 14 figures in 33 part
    corecore