36 research outputs found

    Inhibition of NF-κB-mediated signaling by the cyclin-dependent kinase inhibitor CR8 overcomes pro-survival stimuli to induce apoptosis in chronic lymphocytic leukemia cells

    Get PDF
    Purpose: Chronic lymphocytic leukemia (CLL) is currently incurable with standard chemotherapeutic agents, highlighting the need for novel therapies. Overcoming proliferative and cytoprotective signals generated within the microenvironment of lymphoid organs is essential for limiting CLL progression and ultimately developing a cure. Experimental Design: We assessed the potency of cyclin-dependent kinase (CDK) inhibitor CR8, a roscovitine analog, to induce apoptosis in primary CLL from distinct prognostic subsets using flow cytometry–based assays. CLL cells were cultured in in vitro prosurvival and proproliferative conditions to mimic microenvironmental signals in the lymphoid organs, to elucidate the mechanism of action of CR8 in quiescent and proliferating CLL cells using flow cytometry, Western blotting, and quantitative real-time PCR. Results: CR8 was 100-fold more potent at inducing apoptosis in primary CLL cells than roscovitine, both in isolated culture and stromal-coculture conditions. Importantly, CR8 induced apoptosis in CD40-ligated CLL cells and preferentially targeted actively proliferating cells within these cultures. CR8 treatment induced downregulation of the antiapoptotic proteins Mcl-1 and XIAP, through inhibition of RNA polymerase II, and inhibition of NF-κB signaling at the transcriptional level and through inhibition of the inhibitor of IκB kinase (IKK) complex, resulting in stabilization of IκBα expression. Conclusions: CR8 is a potent CDK inhibitor that subverts pivotal prosurvival and proproliferative signals present in the tumor microenvironment of CLL patient lymphoid organs. Our data support the clinical development of selective CDK inhibitors as novel therapies for CLL

    Novel Mouse Tauopathy Model for Repetitive Mild Traumatic Brain Injury: Evaluation of Long-Term Effects on Cognition and Biomarker Levels After Therapeutic Inhibition of Tau Phosphorylation

    Get PDF
    Traumatic brain injury (TBI) is a risk factor for a group of neurodegenerative diseases termed tauopathies, which includes Alzheimer's disease and chronic traumatic encephalopathy (CTE). Although TBI is stratified by impact severity as either mild (m), moderate or severe, mTBI is the most common and the most difficult to diagnose. Tauopathies are pathologically related by the accumulation of hyperphosphorylated tau (P-tau) and increased total tau (T-tau). Here we describe: (i) a novel human tau-expressing transgenic mouse model, TghTau/PS1, to study repetitive mild closed head injury (rmCHI), (ii) quantitative comparison of T-tau and P-tau from brain and plasma in TghTau/PS1 mice over a 12 month period following rmCHI (and sham), (iii) the usefulness of P-tau as an early- and late-stage blood-based biochemical biomarker for rmCHI, (iii) the influence of kinase-targeted therapeutic intervention on rmCHI-associated cognitive deficits using a combination of lithium chloride (LiCl) and R-roscovitine (ros), and (iv) correlation of behavioral and cognitive changes with concentrations of the brain and blood-based T-tau and P-tau. Compared to sham-treated mice, behavior changes and cognitive deficits of rmCHI-treated TghTau/PS1 mice correlated with increases in both cortex and plasma T-tau and P-tau levels over 12 months. In addition, T-tau, but more predominantly P-tau, levels were significantly reduced in the cortex and plasma by LiCl + ros approaching the biomarker levels in sham and drug-treated sham mice (the drugs had only modest effects on the T-tau and P-tau levels in sham mice) throughout the 12 month study period. Furthermore, although we also observed a reversal of the abnormal behavior and cognitive deficits in the drug-treated rmCHI mice (compared to the untreated rmCHI mice) throughout the time course, these drug-treated effects were most pronounced up until 10 and 12 months where the abnormal behavior and cognition deficits began to gradually increase. These studies describe: (a) a translational relevant animal model for TBI-linked tauopathies, and (b) utilization of T-tau and P-tau as rmCHI biomarkers in plasma to monitor novel therapeutic strategies and treatment regimens for these neurodegenerative diseases

    TRPC6 channel translocation into phagosomal membrane augments phagosomal function

    Get PDF
    Defects in the innate immune system in the lung with attendant bacterial infections contribute to lung tissue damage, respiratory insufficiency, and ultimately death in the pathogenesis of cystic fibrosis (CF). Professional phagocytes, including alveolar macrophages (AMs), have specialized pathways that ensure efficient killing of pathogens in phagosomes. Phagosomal acidification facilitates the optimal functioning of degradative enzymes, ultimately contributing to bacterial killing. Generation of low organellar pH is primarily driven by the V-ATPases, proton pumps that use cytoplasmic ATP to load H(+) into the organelle. Critical to phagosomal acidification are various channels derived from the plasma membrane, including the anion channel cystic fibrosis transmembrane conductance regulator, which shunt the transmembrane potential generated by movement of protons. Here we show that the transient receptor potential canonical-6 (TRPC6) calcium-permeable channel in the AM also functions to shunt the transmembrane potential generated by proton pumping and is capable of restoring microbicidal function to compromised AMs in CF and enhancement of function in non-CF cells. TRPC6 channel activity is enhanced via translocation to the cell surface (and then ultimately to the phagosome during phagocytosis) in response to G-protein signaling activated by the small molecule (R)-roscovitine and its derivatives. These data show that enhancing vesicular insertion of the TRPC6 channel to the plasma membrane may represent a general mechanism for restoring phagosome activity in conditions, where it is lost or impaired.Fil: Riazanski, Vladimir. University of Chicago; Estados UnidosFil: Gabdoulkhakova, Aida G.. University of Chicago; Estados UnidosFil: Boynton, Lin S.. University of Chicago; Estados UnidosFil: Eguchi, Raphael R.. University of Chicago; Estados UnidosFil: Deriy, Ludmila V.. University of Chicago; Estados UnidosFil: Hogarth, D. Kyle. University of Chicago; Estados UnidosFil: Loaëc, Nadège. ManRos Therapeutics; FranciaFil: Oumata, Nassima. ManRos Therapeutics; FranciaFil: Galons, Hervé. Universite de Paris; FranciaFil: Brown, Mary E.. University of Chicago; Estados UnidosFil: Shevchenko, Pavel. University of Chicago; Estados UnidosFil: Gallan, Alexander J.. University of Chicago; Estados UnidosFil: Yoo, Sang Gune. University of Chicago; Estados UnidosFil: Naren, Anjaparavanda P.. Cincinnati Children’s Hospital Medical Center; Estados UnidosFil: Villereal, Mitchel L.. University of Chicago; Estados UnidosFil: Beacham, Daniel W.. Thermo Scientific; Estados UnidosFil: Bindokas, Vytautas P.. University of Chicago; Estados UnidosFil: Birnbaumer, Lutz. National Institute of Environmental Health Sciences; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Meijer, Laurent. ManRos Therapeutics; FranciaFil: Nelson, Deborah J.. University of Chicago; Estados Unido

    Practical Synthesis of Roscovitine and CR8

    No full text

    A Simple Isomerization of the Purine Scaffold of a Kinase Inhibitor, Roscovitine, Affords a Four- to Seven-Fold Enhancement of Its Affinity for Four CDKs. Could This Be Traced Back to Conjugation-Induced Stiffenings/Loosenings of Rotational Barriers?

    No full text
    Roscovitine is an antitumor purine inhibitor of cyclin-dependent kinase CDK5, for which it displays submicromolar affinity. It reached phase IIb clinical trials in 2007. The search for analogues with improved kinase affinities led recently to an isomer, finisterine, having a nearly 10-fold greater affinity for both CDK5 and CDK9. It solely differs by the displacement of one nitrogen atom in the purine ring, from position 6 to position 9. This has no incidence on the intermolecular interaction of either drug with the neighboring sites that anchor the ring in the recognition site. Quantum chemistry calculations combined with conformational and topological analyses of the impact of the purine ring isomerization of roscovitine and finisterine on its conformational stability show that the modified electronic conjugation, on the other hand, results in a stiffening of the rotational barrier around the extracyclic C–NH bond of finisterine, vicinal to N9, and to which an aryl ring is connected, along with a loosening of the barrier around an extracyclic C6–C bond connecting to a shorter, hydrophobic arm. The first effect is proposed to lead to a lesser hydration entropy of solvation in the case of finisterine, thus to a facilitated desolvation term in the overall energy balances

    Evaluation of the antiprion activity of 6-aminophenanthridines and related heterocycles

    No full text
    International audienceSeries of 6-aminophenanthridines and related heterocyclic compounds such as benzonaphtyridines were prepared. Reduction of one of the three aromatic rings was also performed. The compounds were first tested for their antiprion activity in a previously described yeast-based colourimetric prion assay. The most potent derivatives were then assayed ex vivo against the mammalian prion PrP(Sc) in a cell-based assay. Several of the new compounds were found more potent than the parent lead 6-aminophenanthridine. The most promising compounds against yeast and mammalian prions were 8-azido-6-aminophenanthridine (3m), and 7,10-dihydrophenanthridin-6-amine (14). In the mammalian cell-based assay, the IC50 of these two compounds were around 5 μM and 1.8 μM, respectively

    Exploration of the imidazo[1,2-b]pyridazine scaffold as a protein kinase inhibitor.

    No full text
    International audience3,6-Disubstituted imidazo[1,2-b]pyridazine derivatives were synthesized to identify new inhibitors of various eukaryotic kinases, including mammalian and protozoan kinases. Among the imidazo[1,2-b]pyridazines tested as kinase inhibitors, several derivatives were selective for DYRKs and CLKs, with IC50 < 100 nM. The characterization of the kinome of several parasites, such as Plasmodium and Leishmania, has pointed out profound divergences between protein kinases of the parasites and those of the host. This led us to investigate the activities of the prepared compounds against 11 parasitic kinases. 3,6-Disubstituted imidazo[1,2-b]pyridazines showed potent inhibition of Plasmodium falciparum CLK1 (PfCLK1). Compound 20a was found to be the most selective product against CLK1 (IC50 = 82 nM), CLK4 (IC50 = 44 nM), DYRK1A (IC50 = 50 nM), and PfCLK1 (IC50 = 32 nM). The compounds were also tested against Leishmania amazonensis. Several compounds showed anti-leishmanial activity at rather high (10 μM) concentration, but were not toxic at 1 μM or 10 μM, as judged by viability assays carried out using a neuroblastoma cell line

    Targeting low molecular weight cyclin E (LMW-E) in breast cancer.

    No full text
    International audienceLow molecular weight cyclin E (LMW-E) plays an important oncogenic role in breast cancer. LMW-E, which is not found in normal tissue, can promote the formation of aggressive tumors and can lead to increased genomic instability and tumorigenesis. Additionally, breast cancer patients whose tumors express LMW-E have a very poor prognosis. Therefore, we investigated LMW-E as a potential specific target for treatment either alone or in combination therapy. We hypothesized that because LMW-E binds to CDK2 more efficiently than full length cyclin E, resulting in increased activity, CDK inhibitors could be used to target tumors with LMW-E bound to CDK2. To test the hypothesis, an inducible full length and LMW-E MCF7-Tet-On system was established. Cyclin E (full length (EL) or LMW-E) is only expressed upon induction of the transgene. The doubling times of cells were unchanged when the transgenes were induced. However, upon induction, the kinase activity associated with LMW-E was much higher than that in the EL induced cells or any of the uninduced cells. Additionally only the LMW-E induced cells underwent chromosome aberrations and increased polyploidy. By examining changes in proliferation and survival in cells with induced full length and LMW-E, CDK inhibitors alone were determined to be insufficient to specifically inhibit LMW-E expressing cells. However, in combination with Doxorubicin, the CDK inhibitor, Roscovitine (Seliciclib, CYC202), synergistically led to increased cell death in LMW-E expressing cells. Clinically, the combination of CDK inhibitors and chemotherapy such as Doxorubicin provides a viable personalized treatment strategy for those breast cancer patients whose tumors express the LMW-E
    corecore