220 research outputs found
Langmuir wave linear evolution in inhomogeneous nonstationary anisotropic plasma
Equations describing the linear evolution of a non-dissipative Langmuir wave
in inhomogeneous nonstationary anisotropic plasma without magnetic field are
derived in the geometrical optics approximation. A continuity equation is
obtained for the wave action density, and the conditions for the action
conservation are formulated. In homogeneous plasma, the wave field E
universally scales with the electron density N as E ~ N^{3/4}, whereas the
wavevector evolution varies depending on the wave geometry
Regular spatial structures in arrays of Bose-Einstein condensates induced by modulational instability
We show that the phenomenon of modulational instability in arrays of
Bose-Einstein condensates confined to optical lattices gives rise to coherent
spatial structures of localized excitations. These excitations represent thin
disks in 1D, narrow tubes in 2D, and small hollows in 3D arrays, filled in with
condensed atoms of much greater density compared to surrounding array sites.
Aspects of the developed pattern depend on the initial distribution function of
the condensate over the optical lattice, corresponding to particular points of
the Brillouin zone. The long-time behavior of the spatial structures emerging
due to modulational instability is characterized by the periodic recurrence to
the initial low-density state in a finite optical lattice. We propose a simple
way to retain the localized spatial structures with high atomic concentration,
which may be of interest for applications. Theoretical model, based on the
multiple scale expansion, describes the basic features of the phenomenon.
Results of numerical simulations confirm the analytical predictions.Comment: 17 pages, 13 figure
How do methanol masers manage to appear in the youngest star vicinities and isolated molecular clumps?
General characteristics of methanol (CH3OH) maser emission are summarized. It
is shown that methanol maser sources are concentrated in the spiral arms. Most
of the methanol maser sources from the Perseus arm are associated with embedded
stellar clusters and a considerable portion is situated close to compact HII
regions. Almost 1/3 of the Perseus Arm sources lie at the edges of optically
identified HII regions which means that massive star formation in the Perseus
Arm is to a great extent triggered by local phenomena. A multiline analysis of
the methanol masers allows us to determine the physical parameters in the
regions of maser formation. Maser modelling shows that class II methanol masers
can be pumped by the radiation of the warm dust as well as by free-free
emission of a hypercompact region hcHII with a turnover frequency exceeding 100
GHz. Methanol masers of both classes can reside in the vicinity of hcHIIs.
Modelling shows that periodic changes of maser fluxes can be reproduced by
variations of the dust temperature by a few percent which may be caused by
variations in the brightness of the central young stellar object reflecting the
character of the accretion process. Sensitive observations have shown that the
masers with low flux densities can still have considerable amplification
factors. The analysis of class I maser surveys allows us to identify four
distinct regimes that differ by the series of their brightest lines.Comment: 8 pages, 4 figures, invited presentation at IAU242 "Astrophysical
Masers and their environments
Modulational instability in periodic quadratic nonlinear materials
We investigate the modulational instability of plane waves in quadratic
nonlinear materials with linear and nonlinear quasi-phase-matching gratings.
Exact Floquet calculations, confirmed by numerical simulations, show that the
periodicity can drastically alter the gain spectrum but never completely
removes the instability. The low-frequency part of the gain spectrum is
accurately predicted by an averaged theory and disappears for certain gratings.
The high-frequency part is related to the inherent gain of the homogeneous
non-phase-matched material and is a consistent spectral feature.Comment: 4 pages, 7 figures corrected minor misprint
Modulational and Parametric Instabilities of the Discrete Nonlinear Schr\"odinger Equation
We examine the modulational and parametric instabilities arising in a
non-autonomous, discrete nonlinear Schr{\"o}dinger equation setting. The
principal motivation for our study stems from the dynamics of Bose-Einstein
condensates trapped in a deep optical lattice. We find that under periodic
variations of the heights of the interwell barriers (or equivalently of the
scattering length), additionally to the modulational instability, a window of
parametric instability becomes available to the system. We explore this
instability through multiple-scale analysis and identify it numerically. Its
principal dynamical characteristic is that, typically, it develops over much
larger times than the modulational instability, a feature that is qualitatively
justified by comparison of the corresponding instability growth rates
Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media
We present an overview of recent advances in the understanding of optical
beams in nonlinear media with a spatially nonlocal nonlinear response. We
discuss the impact of nonlocality on the modulational instability of plane
waves, the collapse of finite-size beams, and the formation and interaction of
spatial solitons.Comment: Review article, will be published in Journal of Optics B, special
issue on Optical Solitons, 6 figure
Modulational instability of bright solitary waves in incoherently coupled nonlinear Schr\"odinger equations
We present a detailed analysis of the modulational instability (MI) of
ground-state bright solitary solutions of two incoherently coupled nonlinear
Schr\"odinger equations. Varying the relative strength of cross-phase and
self-phase effects we show existence and origin of four branches of MI of the
two-wave solitary solutions. We give a physical interpretation of our results
in terms of the group velocity dispersion (GVD) induced polarization dynamics
of spatial solitary waves. In particular, we show that in media with normal GVD
spatial symmetry breaking changes to polarization symmetry breaking when the
relative strength of the cross-phase modulation exceeds a certain threshold
value. The analytical and numerical stability analyses are fully supported by
an extensive series of numerical simulations of the full model.Comment: Physical Review E, July, 199
Generalized Whittle-Matrn random field as a model of correlated fluctuations
This paper considers a generalization of Gaussian random field with
covariance function of Whittle-Matrn family. Such a random
field can be obtained as the solution to the fractional stochastic differential
equation with two fractional orders. Asymptotic properties of the covariance
functions belonging to this generalized Whittle-Matrn family
are studied, which are used to deduce the sample path properties of the random
field. The Whittle-Matrn field has been widely used in
modeling geostatistical data such as sea beam data, wind speed, field
temperature and soil data. In this article we show that generalized
Whittle-Matrn field provides a more flexible model for wind
speed data.Comment: 22 pages, 10 figures, accepted by Journal of Physics
- …