24 research outputs found

    To reduce a ribonucleotide – Radical solutions in enzymology in form and function

    No full text
    It has been more than 50 years since the enzyme system ribonucleotide reductase (RNR), catalysing the reduction of ribonucleotides to deoxyribonucleotides, was first discovered. RNR was also the first time that radical chemistry was revealed in an enzyme. RNRs carry out a key step in the de novo synthesis of building blocks for DNA and have been found in almost all known organisms. Within this thesis the anaerobic RNR from the thermophilic bacteria Thermotoga maritima has been studied by making use of X-ray crystallography, anaerobic enzyme assays, small-angle X-ray scattering and complementary biophysical methods. The crystal structure of the catalytic subunit of this anaerobic RNR stood out by lacking the typical cysteine residue, which takes part in radical transfer to the substrate, positioned in its active site. The opposing site for the glycyl radical was however structurally conserved, as in structures of other glycyl radical enzymes. It was shown that the glycyl radical could be generated by the addition of the radical generating subunit with a reduced Fe4S4 cluster and the co-substrate S-adenosyl methionine. By also adding T. maritima cell extracts it was verified that the system was an active RNR. Further work focused on understanding complex formation between the two subunits and the structural manifestation of allosteric regulation. Anaerobic analytical ultracentrifugation indicated that a dimer of the catalytic subunit interacts with a monomer of the radical generating subunit. Crystal structures of the catalytic subunit in complex with various nucleotides were used to compare hydrogen bonding networks and nucleotide recognition for allosteric regulation. The second model system studied was the Pseudomonas aeruginosa aerobic RNR catalytic subunit. Proteins from P. aeruginosa are of clinical interest as possible drug targets, due to the many human infections caused by this microorganism. By solving the crystal structure of the catalytic subunit in complex with dATP it became possible to visualise its tetramerisation interface and its surprising capacity to bind three dATP molecules over two ATP cones per monomer. This work shows how RNRs, present in very different types of organisms, still keep on delivering surprises and different solutions to the complexity of synthesising deoxyribonucleotides and regulating nucleotide pools in the cells

    An Aspergillus nidulans β-mannanase with high transglycosylation capacity revealed through comparative studies within glycosidase family 5.

    No full text
    β-Mannanases are involved in the conversion and modification of mannan-based saccharides. Using a retaining mechanism, they can, in addition to hydrolysis, also potentially perform transglycosylation reactions, synthesizing new glyco-conjugates. Transglycosylation has been reported for β-mannanases in GH5 and GH113. However, although they share the same fold and catalytic mechanism, there may be differences in the enzymes' ability to perform transglycosylation. Three GH5 β-mannanases from Aspergillus nidulans, AnMan5A, AnMan5B and AnMan5C, which belong to subfamily GH5_7 were studied. Comparative studies, including the GH5_7 TrMan5A from Trichoderma reesei, showed some differences between the enzymes. All the enzymes could perform transglycosylation but AnMan5B stood out in generating comparably higher amounts of transglycosylation products when incubated with manno-oligosaccharides. In addition, AnMan5B did not use alcohols as acceptor, which was also different compared to the other three β-mannanases. In order to map the preferred binding of manno-oligosaccharides, incubations were performed in H2 (18)O. AnMan5B in contrary to the other enzymes did not generate any (18)O-labelled products. This further supported the idea that AnMan5B potentially prefers to use saccharides as acceptor instead of water. A homology model of AnMan5B showed a non-conserved Trp located in subsite +2, not present in the other studied enzymes. Strong aglycone binding seems to be important for transglycosylation with saccharides. Depending on the application, it is important to select the right enzyme

    A de Novo Designed Coiled-Coil Peptide with a Reversible pH-Induced Oligomerization Switch

    No full text
    Protein conformational switches have many useful applications but are difficult to design rationally. Here we demonstrate how the isoenergetic energy landscape of higher-order coiled coils can enable the formation of an oligomerization switch by insertion of a single destabilizing element into an otherwise stable computationally designed scaffold. We describe a de novo designed peptide that was discovered to switch between a parallel symmetric pentamer at pH 8 and a trimer of antiparallel dimers at pH 6. The transition between pentamer and hexamer is caused by changes in the protonation states of glutamatic acid residues with highly upshifted pKa values in both oligomer forms. The drastic conformational change coupled with the narrow pH range makes the peptide sequence an attractive candidate for introduction of pH sensing into other proteins. The results highlight the remarkable ability of simple-α helices to self-assemble into a vast range of structural states

    The Crystal Structure of Tyrosinase from <i>Verrucomicrobium spinosum</i> Reveals It to Be an Atypical Bacterial Tyrosinase

    No full text
    Tyrosinases belong to the type-III copper enzyme family, which is involved in melanin production in a wide range of organisms. Despite similar overall characteristics and functions, their structures, activities, substrate specificities and regulation vary. The tyrosinase from the bacterium Verrucomicrobium spinosum (vsTyr) is produced as a pre-pro-enzyme in which a C-terminal extension serves as an inactivation domain. It does not require a caddie protein for copper ion incorporation, which makes it similar to eukaryotic tyrosinases. To gain an understanding of the catalytic machinery and regulation of vsTyr activity, we determined the structure of the catalytically active “core domain” of vsTyr by X-ray crystallography. The analysis showed that vsTyr is an atypical bacterial tyrosinase not only because it is independent of a caddie protein but also because it shows the highest structural (and sequence) similarity to plant-derived members of the type-III copper enzyme family and is more closely related to fungal tyrosinases regarding active site features. By modelling the structure of the pre-pro-enzyme using AlphaFold, we observed that Phe453, located in the C-terminal extension, is appropriately positioned to function as a “gatekeeper” residue. Our findings raise questions concerning the evolutionary origin of vsTyr

    The Crystal Structure of Thermotoga maritima Class III Ribonucleotide Reductase Lacks a Radical Cysteine Pre-Positioned in the Active Site

    No full text
    Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to deoxyribonucleotides, the building blocks for DNA synthesis, and are found in all but a few organisms. RNRs use radical chemistry to catalyze the reduction reaction. Despite RNR having evolved several mechanisms for generation of different kinds of essential radicals across a large evolutionary time frame, this initial radical is normally always channelled to a strictly conserved cysteine residue directly adjacent to the substrate for initiation of substrate reduction, and this cysteine has been found in the structures of all RNRs solved to date. We present the crystal structure of an anaerobic RNR from the extreme thermophile Thermotoga maritima (tmNrdD), alone and in several complexes, including with the allosteric effector dATP and its cognate substrate CTP. In the crystal structure of the enzyme as purified, tmNrdD lacks a cysteine for radical transfer to the substrate pre-positioned in the active site. Nevertheless activity assays using anaerobic cell extracts from T. maritima demonstrate that the class III RNR is enzymatically active. Other genetic and microbiological evidence is summarized indicating that the enzyme is important for T. maritima. Mutation of either of two cysteine residues in a disordered loop far from the active site results in inactive enzyme. We discuss the possible mechanisms for radical initiation of substrate reduction given the collected evidence from the crystal structure, our activity assays and other published work. Taken together, the results suggest either that initiation of substrate reduction may involve unprecedented conformational changes in the enzyme to bring one of these cysteine residues to the expected position, or that alternative routes for initiation of the RNR reduction reaction may exist. Finally, we present a phylogenetic analysis showing that the structure of tmNrdD is representative of a new RNR subclass IIIh, present in all Thermotoga species plus a wider group of bacteria from the distantly related phyla Firmicutes, Bacteroidetes and Proteobacteria

    Galactomannan catabolism conferred by a polysaccharide utilisation locus of Bacteroides ovatus : enzyme synergy and crystal structure of a β-mannanase

    No full text
    A recently identified polysaccharide utilization locus (PUL) from Bacteroides ovatus ATCC 8483 is transcriptionally up-regulated during growth on galacto- and glucomannans. It encodes two glycoside hydrolase family 26 (GH26) β-mannanases, BoMan26A and BoMan26B, and a GH36 α-galactosidase, BoGal36A. The PUL also includes two glycan-binding proteins, confirmed by β-mannan affinity electrophoresis. When this PUL was deleted, B. ovatus was no longer able to grow on locust bean galactomannan. BoMan26A primarily formed mannobiose from mannan polysaccharides. BoMan26B had higher activity on galactomannan with a high degree of galactosyl substitution and was shown to be endo-acting generating a more diverse mixture of oligosaccharides, including mannobiose. Of the two β-mannanases, only BoMan26B hydrolyzed galactoglucomannan. A crystal structure of BoMan26A revealed a similar structure to the exo-mannobiohydrolase CjMan26C from Cellvibrio japonicus, with a conserved glycone region (-1 and -2 subsites), including a conserved loop closing the active site beyond subsite -2. Analysis of cellular location by immunolabeling and fluorescence microscopy suggests that BoMan26B is surface-exposed and associated with the outer membrane, although BoMan26A and BoGal36A are likely periplasmic. In light of the cellular location and the biochemical properties of the two characterized β-mannanases, we propose a schemeof sequential action by the glycoside hydrolasesencodedby the β-mannanPULandinvolved in the β-mannanutilization pathway in B. ovatus. The outer membrane-associated BoMan26B initially acts on the polysaccharide galactomannan, producing comparably large oligosaccharide fragments. Galactomanno-oligosaccharides are further processed in the periplasm, degalactosylated by BoGal36A, and subsequently hydrolyzed into mainly mannobiose by the β-mannanase BoMan26A

    Versatile microporous polymer-based supports for serial macromolecular crystallography

    No full text
    Serial data collection has emerged as a major tool for data collection at state-of-the-art light sources, such as microfocus beamlines at synchrotrons and X-ray free-electron lasers. Challenging targets, characterized by small crystal sizes, weak diffraction and stringent dose limits, benefit most from these methods. Here, the use of a thin support made of a polymer-based membrane for performing serial data collection or screening experiments is demonstrated. It is shown that these supports are suitable for a wide range of protein crystals suspended in liquids. The supports have also proved to be applicable to challenging cases such as membrane proteins growing in the sponge phase. The sample-deposition method is simple and robust, as well as flexible and adaptable to a variety of cases. It results in an optimally thin specimen providing low background while maintaining minute amounts of mother liquor around the crystals. The 2 × 2 mm area enables the deposition of up to several microlitres of liquid. Imaging and visualization of the crystals are straightforward on the highly transparent membrane. Thanks to their affordable fabrication, these supports have the potential to become an attractive option for serial experiments at synchrotrons and free-electron lasers

    A simple goniometer-compatible flow cell for serial synchrotron X-ray crystallography

    No full text
    Serial femtosecond crystallography was initially developed for room-temperature X-ray diffraction studies of macromolecules at X-ray free electron lasers. When combined with tools that initiate biological reactions within microcrystals, time-resolved serial crystallography allows the study of structural changes that occur during an enzyme catalytic reaction. Serial synchrotron X-ray crystallography (SSX), which extends serial crystallography methods to synchrotron radiation sources, is expanding the scientific community using serial diffraction methods. This report presents a simple flow cell that can be used to deliver microcrystals across an X-ray beam during SSX studies. This device consists of an X-ray transparent glass capillary mounted on a goniometer-compatible 3D-printed support and is connected to a syringe pump via lightweight tubing. This flow cell is easily mounted and aligned, and it is disposable so can be rapidly replaced when blocked. This system was demonstrated by collecting SSX data at MAX IV Laboratory from microcrystals of the integral membrane protein cytochrome c oxidase from Thermus thermophilus, from which an X-ray structure was determined to 2.12 Å resolution. This simple SSX platform may help to lower entry barriers for non-expert users of SSX

    The Crystal Structure of <i>Thermotoga maritima - Fig 1 </i> Class III Ribonucleotide Reductase Lacks a Radical Cysteine Pre-Positioned in the Active Site

    No full text
    <p>a) The radical generation and transfer pathways of all three classes of RNR are thought to converge on a completely conserved cysteine residue that transfers it to the substrate. The class I, II and III enzymes are coloured mauve, pink and gold respectively. The finger loops of all three classes and the C-terminal loop of the class III RNRs, as exemplified by the enzyme from bacteriophage T4, are shown in cartoon representation. The position of the glycyl radical in class III is marked by a sphere. The two hydrogen-bonded Tyr residues that end the proton-coupled electron transfer chain (PCET) in class I are shown in mauve, with the terminal oxygen atom shown as a sphere. The 5’-deoxyadenosine moiety generated by cleavage of the C-Co bond in AdoCbl by class II RNRs is shown with the 5’-C atom shown as a pink sphere. The GDP substrate bound to the class II enzyme is shown as sticks with the C3’ atom marked with a gray sphere. b) Overall structure of the tmNrdD dimer. The left-hand monomer is coloured grey while the right-hand monomer is coloured as a spectrum from deep blue at the N-terminus to deep red at the C-terminus. The allosteric effector dATP and the substrate CTP are shown in space-filling representation. c) Comparison of the structures of tmNrdD and the previously determined structure of NrdD from bacteriophage T4 [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0128199#pone.0128199.ref009" target="_blank">9</a>]. The T4 structure is coloured dark blue and tmNrdD is coloured red. d) Depiction of the active site area where the tips of the finger loop (blue) and the C-terminal loop (orange) meet. The position of the glycyl radical is marked by an orange sphere and Ile359 at the tip of the finger loop by a blue sphere. The substrate CTP is shown in stick representation. The Zn-binding domain is shown in yellow.</p
    corecore