87 research outputs found

    Anoxic Iron Cycling Bacteria from an Iron Sulfide- and Nitrate-Rich Freshwater Environment

    Get PDF
    In this study, both culture-dependent and culture-independent methods were used to determine whether the iron sulfide mineral- and nitrate-rich freshwater nature reserve Het Zwart Water accommodates anoxic microbial iron cycling. Molecular analyses (16S rRNA gene clone library and fluorescence in situ hybridization, FISH) showed that sulfur-oxidizing denitrifiers dominated the microbial population. In addition, bacteria resembling the iron-oxidizing, nitrate-reducing Acidovorax strain BrG1 accounted for a major part of the microbial community in the groundwater of this ecosystem. Despite the apparent abundance of strain BrG1-like bacteria, iron-oxidizing nitrate reducers could not be isolated, likely due to the strictly autotrophic cultivation conditions adopted in our study. In contrast an iron-reducing Geobacter sp. was isolated from this environment while FISH and 16S rRNA gene clone library analyses did not reveal any Geobacter sp.-related sequences in the groundwater. Our findings indicate that iron-oxidizing nitrate reducers may be of importance to the redox cycling of iron in the groundwater of our study site and illustrate the necessity of employing both culture-dependent and independent methods in studies on microbial processes

    Impact of the lanthanide contraction on the activity of a lanthanide-dependent methanol dehydrogenase - a kinetic and DFT study

    Get PDF
    Interest in the bioinorganic chemistry of lanthanides is growing rapidly as more and more lanthanide-dependent bacteria are being discovered. Especially the earlier lanthanides have been shown to be preferentially utilized by bacteria that need these Lewis acids as cofactors in their alcohol dehydrogenase enzymes. Here, we investigate the impact of the lanthanide ions lanthanum(III) to lutetium(III) (excluding Pm) on the catalytic parameters (v(max), K-M, k(cat)/K-M) of a methanol dehydrogenase (MDH) isolated from Methylacidiphilum fumariolicum SolV. Kinetic experiments and DFT calculations were used to discuss why only the earlier lanthanides (La-Gd) promote high MDH activity. Impact of Lewis acidity, coordination number preferences, stability constants and other properties that are a direct result of the lanthanide contraction are discussed in light of the two proposed mechanisms for MDH

    Assessing Lanthanide‐Dependent Methanol Dehydrogenase Activity: The Assay Matters

    Get PDF
    Artificial dye-coupled assays have been widely adopted as a rapid and convenient method to assess the activity of methanol dehydrogenases (MDH). Lanthanide(Ln)-dependent XoxF-MDHs are able to incorporate different lanthanides (Lns) in their active site. Dye-coupled assays showed that the earlier Lns exhibit a higher enzyme activity than the late Lns. Despite widespread use, there are limitations: oftentimes a pH of 9 and activators are required for the assay. Moreover, Ln-MDH variants are not obtained by isolation from the cells grown with the respective Ln, but by incubation of an apo-MDH with the Ln. Herein, we report the cultivation of Ln-dependent methanotroph Methylacidiphilum fumariolicum SolV with nine different Lns, the isolation of the respective MDHs and the assessment of the enzyme activity using the dye-coupled assay. We compare these results with a protein-coupled assay using its physiological electron acceptor cytochrome cGJ (cyt cGJ). Depending on the assay, two distinct trends are observed among the Ln series. The specific enzyme activity of La-, Ce- and Pr-MDH, as measured by the protein-coupled assay, exceeds that measured by the dye-coupled assay. This suggests that early Lns also have a positive effect on the interaction between XoxF-MDH and its cyt cGJ thereby increasing functional efficiency

    Understanding the chemistry of the artificial electron acceptors PES, PMS, DCPIP and Wurster’s Blue in methanol dehydrogenase assays

    Get PDF
    Methanol dehydrogenases (MDH) have recently taken the spotlight with the discovery that a large portion of these enzymes in nature utilize lanthanides in their active sites. The kinetic parameters of these enzymes are determined with a spectrophotometric assay first described by Anthony and Zatman 55 years ago. This artificial assay uses alkylated phenazines, such as phenazine ethosulfate (PES) or phenazine methosulfate (PMS), as primary electron acceptors (EAs) and the electron transfer is further coupled to a dye. However, many groups have reported problems concerning the bleaching of the assay mixture in the absence of MDH and the reproducibility of those assays. Hence, the comparison of kinetic data among MDH enzymes of different species is often cumbersome. Using mass spectrometry, UV–Vis and electron paramagnetic resonance (EPR) spectroscopy, we show that the side reactions of the assay mixture are mainly due to the degradation of assay components. Light-induced demethylation (yielding formaldehyde and phenazine in the case of PMS) or oxidation of PES or PMS as well as a reaction with assay components (ammonia, cyanide) can occur. We suggest here a protocol to avoid these side reactions. Further, we describe a modified synthesis protocol for obtaining the alternative electron acceptor, Wurster’s blue (WB), which serves both as EA and dye. The investigation of two lanthanide-dependent methanol dehydrogenases from Methylorubrum extorquens AM1 and Methylacidiphilum fumariolicum SolV with WB, along with handling recommendations, is presented

    A novel mesocosm set-up reveals strong methane emission reduction in submerged peat moss Sphagnum cuspidatum by tightly associated methanotrophs

    Get PDF
    Wetlands present the largest natural sources of methane (CH_4) and their potential CH_4 emissions greatly vary due to the activity of CH_4-oxidizing bacteria associated with wetland plant species. In this study, the association of CH_4-oxidizing bacteria with submerged Sphagnum peat mosses was studied, followed by the development of a novel mesocosm set-up. This set-up enabled the precise control of CH_4 input and allowed for monitoring the dissolved CH_4in a Sphagnum moss layer while mimicking natural conditions. Two mesocosm set-ups were used in parallel: one containing a Sphagnum moss layer in peat water, and a control only containing peat water. Moss-associated CH_4 oxidizers in the field could reduce net CH_4 emission up to 93%, and in the mesocosm set-up up to 31%. Furthermore, CH_4 oxidation was only associated with Sphagnum, and did not occur in peat water. Especially methanotrophs containing a soluble methane monooxygenase enzyme were significantly enriched during the 32 day mesocosm incubations. Together these findings showed the new mesocosm setup is very suited to study CH_4 cycling in submerged Sphagnum moss community under controlled conditions. Furthermore, the tight associated between Sphagnum peat mosses and methanotrophs can significantly reduce CH_4 emissions in submerged peatlands

    Effects of nitrogen fertilization on diazotrophic activity of microorganisms associated with Sphagnum magellanicum

    Get PDF
    In pristine ombrotrophic Sphagnum-dominated peatland ecosystems nitrogen (N) is often a limiting nutrient, which is replenished by biological N-2 fixation and atmospheric N deposition. It is, however, unclear which impact long-term N deposition has on microbial N-2 fixing activity and diazotrophic diversity, and whether phosphorus (P) modulates the response. Therefore, we studied the impact of increased N deposition and N depletion on microbial N-2 fixation and diazotrophic diversity associated with the peat moss Sphagnum magellanicum, and their interaction with P availability.Nitrogenase activities of S. magellanicum-associated microorganisms were determined by acetylene reduction assays (ARA) and N-15(2) tracer methods on mosses from two geographically distinct locations with different N deposition histories, high or low N deposition, and in samples depleted in N (grown 3 years in the greenhouse) versus recent field samples. The short-term response to increased N deposition was tested for mosses differing in N and P fertilization histories. In addition, diversity of diazotrophic microorganisms was assessed by nifH gene amplicon sequencing of N-depleted mosses.We showed distinct and persistent differences in diazotrophic communities and their activities associated with S. magellanicum from sites with high versus low N deposition. Initially, diazotrophic activity was six times higher for the low N site. During incubation and repeated ARA, however, this activity strongly decreased, while it remained stable for the high N site. Activity for the high N site could not be increased by long-term experimental N deprivation. Short-term, experimental N application had an inhibitory effect on N-2 fixation for both sites, which was not observed in mosses with high indirect P availability.We conclude that although N deposition negatively affects N-2 fixation as also shown in previous studies, long-term effects of N deprivation on the diazotrophic activity and community are more complex. Furthermore, our results indicated that P availability might be an important factor in modulating the response of Sphagnum-associated diazotrophs to N deposition.</p

    Complete Genome Sequence of the Aerobic Facultative Methanotroph Methylocella tundrae Strain T4

    Get PDF
    Methylocella tundrae T4T is a facultative aerobic methanotroph which was isolated from an acidic tundra wetland and possesses only a soluble methane monooxygenase. The complete genome, which includes two megaplasmids, was sequenced using a combination of Illumina and Nanopore technologies. One of the megaplasmids carries a propane monooxygenase gene cluster

    A novel mesocosm set-up reveals strong methane emission reduction in submerged peat moss Sphagnum cuspidatum by tightly associated methanotrophs

    Get PDF
    Wetlands present the largest natural sources of methane (CH_4) and their potential CH_4 emissions greatly vary due to the activity of CH_4-oxidizing bacteria associated with wetland plant species. In this study, the association of CH_4-oxidizing bacteria with submerged Sphagnum peat mosses was studied, followed by the development of a novel mesocosm set-up. This set-up enabled the precise control of CH_4 input and allowed for monitoring the dissolved CH_4in a Sphagnum moss layer while mimicking natural conditions. Two mesocosm set-ups were used in parallel: one containing a Sphagnum moss layer in peat water, and a control only containing peat water. Moss-associated CH_4 oxidizers in the field could reduce net CH_4 emission up to 93%, and in the mesocosm set-up up to 31%. Furthermore, CH_4 oxidation was only associated with Sphagnum, and did not occur in peat water. Especially methanotrophs containing a soluble methane monooxygenase enzyme were significantly enriched during the 32 day mesocosm incubations. Together these findings showed the new mesocosm setup is very suited to study CH_4 cycling in submerged Sphagnum moss community under controlled conditions. Furthermore, the tight associated between Sphagnum peat mosses and methanotrophs can significantly reduce CH_4 emissions in submerged peatlands

    Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge

    Get PDF
    Recently discovered microorganisms affiliated to the bacterial phylum NC10, named “Candidatus Methylomirabilis oxyfera”, perform nitrite-dependent anaerobic methane oxidation. These microorganisms could be important players in a novel way of anaerobic wastewater treatment where ammonium and residual dissolved methane might be removed at the expense of nitrate or nitrite. To find suitable inocula for reactor startup, ten selected wastewater treatment plants (WWTPs) located in The Netherlands were screened for the endogenous presence of M. oxyfera using molecular diagnostic methods. We could identify NC10 bacteria with 98% similarity to M. oxyfera in nine out of ten WWTPs tested. Sludge from one selected WWTP was used to start a new enrichment culture of NC10 bacteria. This enrichment was monitored using specific pmoA primers and M. oxyfera cells were visualized with fluorescence oligonucleotide probes. After 112 days, the enrichment consumed up to 0.4 mM NO2− per day. The results of this study show that appropriate sources of biomass, enrichment strategies, and diagnostic tools existed to start and monitor pilot scale tests for the implementation of nitrite-dependent methane oxidation in wastewater treatment at ambient temperature
    corecore